609 research outputs found
Description of Drip-Line Nuclei within Relativistic Mean-Field Plus BCS Approach
Recently it has been demonstrated, considering Ni and Ca isotopes as
prototypes, that the relativistic mean-field plus BCS (RMF+BCS) approach
wherein the single particle continuum corresponding to the RMF is replaced by a
set of discrete positive energy states for the calculation of pairing energy
provides a good approximation to the full relativistic Hartree-Bogoliubov (RHB)
description of the ground state properties of the drip-line neutron rich
nuclei. The applicability of RMF+BCS is essentially due to the fact that the
main contribution to the pairing correlations is provided by the low-lying
resonant states. General validity of this approach is demonstrated by the
detailed calculations for the ground state properties of the chains of isotopes
of O, Ca, Ni, Zr, Sn and Pb nuclei. The TMA and NL-SH force parameter sets have
been used for the effective mean-field Lagrangian. Comprehensive results for
the two neutron separation energy, rms radii, single particle pairing gaps and
pairing energies etc. are presented. The Ca isotopes are found to exhibit
distinct features near the neutron drip line whereby it is found that further
addition of neutrons causes a rapid increase in the neutron rms radius with
almost no increase in the binding energy, indicating the occurrence of halos. A
comparison of these results with the available experimental data and with the
recent continuum relativistic Hartree-Bogoliubov (RCHB) calculations amply
demonstrates the validity and usefulness of this fast RMF+BCS approach.Comment: 59 pages, 40 figure
PS16dtm: A Tidal Disruption Event in a Narrow-line Seyfert 1 Galaxy
[Abridged] We present observations of PS16dtm, a luminous transient that
occurred at the nucleus of a known Narrow-line Seyfert 1 galaxy hosting a
10 M black hole. The transient was previously claimed to be a Type
IIn SLSN due to its luminosity and hydrogen emission lines. The light curve
shows that PS16dtm brightened by about two magnitudes in ~50 days relative to
the archival host brightness and then exhibited a plateau phase for about 100
days followed by the onset of fading in the UV. During the plateau PS16dtm
showed no color evolution, maintained a blackbody temperature of 1.7 x 10
K, and radiated at approximately of the SMBH. The spectra exhibit
multi-component hydrogen emission lines and strong FeII emission, show little
evolution with time, and closely resemble the spectra of NLS1s while being
distinct from those of Type IIn SNe. Moreover, PS16dtm is undetected in the
X-rays to a limit an order of magnitude below an archival X-ray detection of
its host galaxy. These observations strongly link PS16dtm to activity
associated with the SMBH and are difficult to reconcile with a SN origin or any
known form of AGN variability, and therefore we argue that it is a TDE in which
the accretion of the stellar debris powers the rise in the continuum and
excitation of the pre-existing broad line region, while providing material that
obscures the X-ray emitting region of the pre-existing AGN accretion disk. A
detailed TDE model fit to the light curve indicates that PS16dtm will remain
bright for several years; we further predict that the X-ray emission will
reappear on a similar timescale as the accretion rate declines. Finally, we
place PS16dtm in the context of other TDEs and find that TDEs in AGN galaxies
are an order of magnitude more efficient and reach Eddington luminosities,
likely due to interaction of the stellar debris with the pre-existing accretion
disk.Comment: 19 pages, 17 figures, Submitted to Ap
Evidence for non-stellar rest-frame near-IR emission associated with increased star formation in galaxies at
We explore the presence of non-stellar rest-frame near-IR () emission in galaxies at . Previous studies identified
this excess in relatively small samples and suggested that such non-stellar
emission, which could be linked to the polycyclic
aromatic hydrocarbons feature or hot dust emission, is associated with an
increased star formation rate (SFR). In this Letter, we confirm and quantify
the presence of an IR excess in a significant fraction of galaxies in the
3D-HST GOODS catalogs. By constructing a matched sample of galaxies with and
without strong non-stellar near-IR emission, we find that galaxies with such
emission are predominantly star-forming galaxies. Moreover, star-forming
galaxies with an excess show increased mid- and far-IR and H emission
compared to other star-forming galaxies without. While galaxies with a near-IR
excess show a larger fraction of individually detected X-ray active galactic
nuclei (AGNs), an X-ray stacking analysis, together with the IR-colors and
H profiles, shows that AGNs are unlikely to be the dominant source of
the excess in the majority of galaxies. Our results suggest that non-stellar
near-IR emission is linked to increased SFRs and is ubiquitous among
star-forming galaxies. As such, the near-IR emission might be a powerful tool
to measure SFRs in the era of the James Webb Space Telescope.Comment: 6 pages, 5 figures, accepted for publication in ApJ
ZFOURGE: Extreme 5007 emission may be a common early-lifetime phase for star-forming galaxies at
Using the \prospector\ spectral energy distribution (SED) fitting code, we
analyze the properties of 19 Extreme Emission Line Galaxies (EELGs) identified
in the bluest composite SED in the \zfourge\ survey at .
\prospector\ includes a physical model for nebular emission and returns
probability distributions for stellar mass, stellar metallicity, dust
attenuation, and nonparametric star formation history (SFH). The EELGs show
evidence for a starburst in the most recent 50 Myr, with the median EELG having
a specific star formation rate (sSFR) of 4.6 Gyr and forming 15\% of its
mass in this short time. For a sample of more typical star-forming galaxies
(SFGs) at the same redshifts, the median SFG has a sSFR of 1.1 Gyr and
forms only of its mass in the last 50 Myr. We find that virtually all of
our EELGs have rising SFHs, while most of our SFGs do not. From our analysis,
we hypothesize that many, if not most, star-forming galaxies at
undergo an extreme H+[\hbox{{\rm O}\kern 0.1em{\sc iii}}] emission
line phase early in their lifetimes. In a companion paper, we obtain
spectroscopic confirmation of the EELGs as part of our {\sc MOSEL} survey. In
the future, explorations of uncertainties in modeling the UV slope for galaxies
at are needed to better constrain their properties, e.g. stellar
metallicities.Comment: 11 pages, 5 figures (main figure is fig 5), accepted for publication
in Ap
SPECULATOR: Emulating stellar population synthesis for fast and accurate galaxy spectra and photometry
We present SPECULATOR - a fast, accurate, and flexible framework for emulating stellar population synthesis (SPS) models for predicting galaxy spectra and photometry. For emulating spectra, we use principal component analysis to construct a set of basis functions, and neural networks to learn the basis coefficients as a function of the SPS model parameters. For photometry, we parameterize the magnitudes (for the filters of interest) as a function of SPS parameters by a neural network. The resulting emulators are able to predict spectra and photometry under both simple and complicated SPS model parameterizations to percent-level accuracy, giving a factor of - speed up over direct SPS computation. They have readily-computable derivatives, making them amenable to gradient-based inference and optimization methods. The emulators are also straightforward to call from a GPU, giving an additional order-of-magnitude speed-up. Rapid SPS computations delivered by emulation offers a massive reduction in the computational resources required to infer the physical properties of galaxies from observed spectra or photometry and simulate galaxy populations under SPS models, whilst maintaining the accuracy required for a range of applications
Investigating the Star Formation Rates of AGN Hosts Relative to the Star-Forming Main Sequence
A fundamental question in galaxy and black-hole evolution remains how
galaxies and their supermassive black holes have evolved together over cosmic
time. Specifically, it is still unclear how the position of X-ray active
galactic nucleus (AGN) host galaxies with respect to the star-forming main
sequence (MS) may change with the X-ray luminosity () of the AGN
or the stellar mass () of the host galaxy. We use data from XMM-SERVS
to probe this issue. XMM-SERVS is covered by the largest medium-depth X-ray
survey (with superb supporting multiwavelength data) and thus contains the
largest sample to date for study. To ensure consistency, we locally derive the
MS from a large reference galaxy sample. In our analysis, we demonstrate that
the turnover of the galaxy MS does not allow reliable conclusions to be drawn
for high-mass AGNs, and we establish a robust safe regime where the results do
not depend upon the choice of MS definition. Under this framework, our results
indicate that less-massive AGN host-galaxies (
) generally possess enhanced SFRs compared to their normal-galaxy
counterparts while the more-massive AGN host galaxies ( ) lie on or below the star-forming MS. Further,
we propose an empirical model for how the placement of an AGN with respect to
the MS (SFR) evolves as a function of both and
.Comment: 15 pages, 10 figures, 1 table, accepted for publication in Ap
Hierarchical Bayesian inference of photometric redshifts with stellar population synthesis models
We present a Bayesian hierarchical framework to analyze photometric galaxy survey data with stellar population synthesis (SPS) models. Our method couples robust modeling of spectral energy distributions with a population model and a noise model to characterize the statistical properties of the galaxy populations and real observations, respectively. By self-consistently inferring all model parameters, from high-level hyperparameters to SPS parameters of individual galaxies, one can separate sources of bias and uncertainty in the data. We demonstrate the strengths and flexibility of this approach by deriving accurate photometric redshifts for a sample of spectroscopically confirmed galaxies in the COSMOS field, all with 26-band photometry and spectroscopic redshifts. We achieve a performance competitive with publicly released photometric redshift catalogs based on the same data. Prior to this work, this approach was computationally intractable in practice due to the heavy computational load of SPS model calls; we overcome this challenge by the addition of neural emulators. We find that the largest photometric residuals are associated with poor calibration for emission-line luminosities and thus build a framework to mitigate these effects. This combination of physics-based modeling accelerated with machine learning paves the path toward meeting the stringent requirements on the accuracy of photometric redshift estimation imposed by upcoming cosmological surveys. The approach also has the potential to create new links between cosmology and galaxy evolution through the analysis of photometric data sets
- …