577 research outputs found
Quantum nondemolition measurement of a nonclassical state of a massive object
While quantum mechanics exquisitely describes the behavior of microscopic
systems, one ongoing challenge is to explore its applicability to systems of
larger size and mass. Unfortunately, quantum states of increasingly macroscopic
objects are more easily corrupted by unintentional measurements from the
classical environment. Additionally, even the intentional measurements from the
observer can further perturb the system. In optomechanics, coherent light
fields serve as the intermediary between the fragile mechanical states and our
inherently classical world by exerting radiation pressure forces and extracting
mechanical information. Here we engineer a microwave cavity optomechanical
system to stabilize a nonclassical steady-state of motion while independently,
continuously, and nondestructively monitoring it. By coupling the motion of an
aluminum membrane to two microwave cavities, we separately prepare and measure
a squeezed state of motion. We demonstrate a quantum nondemolition (QND)
measurement of sub-vacuum mechanical quadrature fluctuations. The techniques
developed here have direct applications in the areas of quantum-enhanced
sensing and quantum information processing, and could be further extended to
more complex quantum states.Comment: 9 pages, 6 figure
Demonstration of efficient nonreciprocity in a microwave optomechanical circuit
The ability to engineer nonreciprocal interactions is an essential tool in
modern communication technology as well as a powerful resource for building
quantum networks. Aside from large reverse isolation, a nonreciprocal device
suitable for applications must also have high efficiency (low insertion loss)
and low output noise. Recent theoretical and experimental studies have shown
that nonreciprocal behavior can be achieved in optomechanical systems, but
performance in these last two attributes has been limited. Here we demonstrate
an efficient, frequency-converting microwave isolator based on the
optomechanical interactions between electromagnetic fields and a mechanically
compliant vacuum gap capacitor. We achieve simultaneous reverse isolation of
more than 20 dB and insertion loss less than 1.5 dB over a bandwidth of 5 kHz.
We characterize the nonreciprocal noise performance of the device, observing
that the residual thermal noise from the mechanical environments is routed
solely to the input of the isolator. Our measurements show quantitative
agreement with a general coupled-mode theory. Unlike conventional isolators and
circulators, these compact nonreciprocal devices do not require a static
magnetic field, and they allow for dynamic control of the direction of
isolation. With these advantages, similar devices could enable programmable,
high-efficiency connections between disparate nodes of quantum networks, even
efficiently bridging the microwave and optical domains.Comment: 9 pages, 6 figure
Experimental demonstration of Aharonov-Casher interference in a Josephson junction circuit
A neutral quantum particle with magnetic moment encircling a static electric
charge acquires a quantum mechanical phase (Aharonov-Casher effect). In
superconducting electronics the neutral particle becomes a fluxon that moves
around superconducting islands connected by Josephson junctions. The full
understanding of this effect in systems of many junctions is crucial for the
design of novel quantum circuits. Here we present measurements and quantitative
analysis of fluxon interference patterns in a six Josephson junction chain. In
this multi-junction circuit the fluxon can encircle any combination of charges
on five superconducting islands, resulting in a complex pattern. We compare the
experimental results with predictions of a simplified model that treats fluxons
as independent excitations and with the results of the full diagonalization of
the quantum problem. Our results demonstrate the accuracy of the fluxon
interference description and the quantum coherence of these arrays
- …