38 research outputs found

    Cavity sideband cooling of a single trapped ion

    Full text link
    We report a demonstration and quantitative characterization of one-dimensional cavity cooling of a single trapped 88Sr+ ion in the resolved sideband regime. We measure the spectrum of cavity transitions, the rates of cavity heating and cooling, and the steady-state cooling limit. The cavity cooling dynamics and cooling limit of 22.5(3) motional quanta, limited by the moderate coupling between the ion and the cavity, are consistent with a simple model [Phys. Rev. A 64, 033405] without any free parameters, validating the rate equation model for cavity cooling.Comment: 5 pages, 4 figure

    Electron impact ionization loading of a surface electrode ion trap

    Full text link
    We demonstrate a method for loading surface electrode ion traps by electron impact ionization. The method relies on the property of surface electrode geometries that the trap depth can be increased at the cost of more micromotion. By introducing a buffer gas, we can counteract the rf heating assocated with the micromotion and benefit from the larger trap depth. After an initial loading of the trap, standard compensation techniques can be used to cancel the stray fields resulting from charged dielectric and allow for the loading of the trap at ultra-high vacuum.Comment: 4 pages, 5 eps figures. Shift in focus, minor correction

    Suppression of Heating Rates in Cryogenic Surface-Electrode Ion Traps

    Full text link
    Dense arrays of trapped ions provide one way of scaling up ion trap quantum information processing. However, miniaturization of ion traps is currently limited by sharply increasing motional state decoherence at sub-100 um ion-electrode distances. We characterize heating rates in cryogenically cooled surface-electrode traps, with characteristic sizes in 75 um to 150 um range. Upon cooling to 6 K, the measured rates are suppressed by 7 orders of magnitude, two orders of magnitude below previously published data of similarly sized traps operated at room temperature. The observed noise depends strongly on fabrication process, which suggests further improvements are possible.Comment: 4 pages, 4 figure

    Superconducting microfabricated ion traps

    Full text link
    We fabricate superconducting ion traps with niobium and niobium nitride and trap single 88Sr ions at cryogenic temperatures. The superconducting transition is verified and characterized by measuring the resistance and critical current using a 4-wire measurement on the trap structure, and observing change in the rf reflection. The lowest observed heating rate is 2.1(3) quanta/sec at 800 kHz at 6 K and shows no significant change across the superconducting transition, suggesting that anomalous heating is primarily caused by noise sources on the surface. This demonstration of superconducting ion traps opens up possibilities for integrating trapped ions and molecular ions with superconducting devices.Comment: 3 pages, 2 figure

    The Kondo Effect in the Presence of Magnetic Impurities

    Full text link
    We measure transport through gold grain quantum dots fabricated using electromigration, with magnetic impurities in the leads. A Kondo interaction is observed between dot and leads, but the presence of magnetic impurities results in a gate-dependent zero-bias conductance peak that is split due to an RKKY interaction between the spin of the dot and the static spins of the impurities. A magnetic field restores the single Kondo peak in the case of an antiferromagnetic RKKY interaction. This system provides a new platform to study Kondo and RKKY interactions in metals at the level of a single spin.Comment: 5 pages, 4 figure

    Cryogenic Ion Trapping Systems with Surface-Electrode Traps

    Full text link
    We present two simple cryogenic RF ion trap systems in which cryogenic temperatures and ultra high vacuum pressures can be reached in as little as 12 hours. The ion traps are operated either in a liquid helium bath cryostat or in a low vibration closed cycle cryostat. The fast turn around time and availability of buffer gas cooling made the systems ideal for testing surface-electrode ion traps. The vibration amplitude of the closed cycled cryostat was found to be below 106 nm. We evaluated the systems by loading surface-electrode ion traps with 88^{88}Sr+^+ ions using laser ablation, which is compatible with the cryogenic environment. Using Doppler cooling we observed small ion crystals in which optically resolved ions have a trapped lifetime over 2500 minutes.Comment: 10 pages, 13 EPS figure

    Laser ablation loading of a surface-electrode ion trap

    Full text link
    We demonstrate loading by laser ablation of 88^{88}Sr+^+ ions into a mm-scale surface-electrode ion trap. The laser used for ablation is a pulsed, frequency-tripled Nd:YAG with pulse energies of 1-10 mJ and durations of 3-5 ns. An additional laser is not required to photoionize the ablated material. The efficiency and lifetime of several candidate materials for the laser ablation target are characterized by measuring the trapped ion fluorescence signal for a number of consecutive loads. Additionally, laser ablation is used to load traps with a trap depth (40 meV) below where electron impact ionization loading is typically successful (≳\gtrsim 500 meV).Comment: 4 pages, 4 figure

    Time-separated entangled light pulses from a single-atom emitter

    Full text link
    The controlled interaction between a single, trapped, laser-driven atom and the mode of a high-finesse optical cavity allows for the generation of temporally separated, entangled light pulses. Entanglement between the photon-number fluctuations of the pulses is created and mediated via the atomic center-of-mass motion, which is interfaced with light through the mechanical effect of atom-photon interaction. By means of a quantum noise analysis we determine the correlation matrix which characterizes the entanglement, as a function of the system parameters. The scheme is feasible in experimentally accessible parameter regimes. It may be easily extended to the generation of entangled pulses at different frequencies, even at vastly different wavelengths.Comment: 17 pages, 5 figures. Modified version, to appear in the New Journal of Physic

    Ultrasensitive force and displacement detection using trapped ions

    Full text link
    The ability to detect extremely small forces is vital for a variety of disciplines including precision spin-resonance imaging, microscopy, and tests of fundamental physical phenomena. Current force-detection sensitivity limits have surpassed 1 aN/HzaN/\sqrt{Hz} (atto =10−18=10^{-18}) through coupling of micro or nanofabricated mechanical resonators to a variety of physical systems including single-electron transistors, superconducting microwave cavities, and individual spins. These experiments have allowed for probing studies of a variety of phenomena, but sensitivity requirements are ever-increasing as new regimes of physical interactions are considered. Here we show that trapped atomic ions are exquisitely sensitive force detectors, with a measured sensitivity more than three orders of magnitude better than existing reports. We demonstrate detection of forces as small as 174 yNyN (yocto =10−24=10^{-24}), with a sensitivity 390±150\pm150 yN/HzyN/\sqrt{Hz} using crystals of n=60n=60 9^{9}Be+^{+} ions in a Penning trap. Our technique is based on the excitation of normal motional modes in an ion trap by externally applied electric fields, detection via and phase-coherent Doppler velocimetry, which allows for the discrimination of ion motion with amplitudes on the scale of nanometers. These experimental results and extracted force-detection sensitivities in the single-ion limit validate proposals suggesting that trapped atomic ions are capable of detecting of forces with sensitivity approaching 1 yN/HzyN/\sqrt{Hz}. We anticipate that this demonstration will be strongly motivational for the development of a new class of deployable trapped-ion-based sensors, and will permit scientists to access new regimes in materials science.Comment: Expanded introduction and analysis. Methods section added. Subject to press embarg

    Demonstration of a Scalable, Multiplexed Ion Trap for Quantum Information Processing

    Get PDF
    Author's final manuscript: July 9, 2009A scalable, multiplexed ion trap for quantum information processing is fabricated and tested. The trap design and fabrication process are optimized for scalability to small trap size and large numbers of interconnected traps, and for integration of control electronics and optics. Multiple traps with similar designs are tested with [superscript 111]Cd[superscript +], [superscript 25]Mg[superscript +], and [superscript 88]Sr[superscript +] ions at room temperature and with [superscript 88]Sr[superscript +] at 6 K, with respective ion lifetimes of 90 s, 300 ± 30 s, 56 ± 6 s, and 4.5 ± 1.1 hours. The motional heating rate for [superscript 25]Mg[superscript +] at room temperature and a trap frequency of 1.6 MHz is measured to be 7 ± 3 quanta per millisecond. For [superscript 88]Sr[superscript +] at 6 K and 540 kHz the heating rate is measured to be 220 ± 30 quanta per second.United States. Intelligence Advanced Research Projects ActivityNational Institute of Standards and Technology (U.S.) (Quantum Information Program
    corecore