24,533 research outputs found

    Inclinations and black hole masses of Seyfert 1 galaxies

    Get PDF
    A tight correlation of black hole mass and central velocity dispersion has been found recently for both active and quiescent galaxies. By applying this correlation, we develop a simple method to derive the inclination angles for a sample of 11 Seyfert 1 galaxies that have both measured central velocity dispersions and black hole masses estimated by reverberation mapping. These angles, with a mean value of 36 degree that agrees well with the result obtained by fitting the iron Kα\alpha lines of Seyfert 1s observed with ASCA, provide further support to the orientation-dependent unification scheme of AGN. A positive correlation of the inclinations with observed FWHMs of Hβ\beta line and a possible anti-correlation with the nuclear radio-loudness have been found. We conclude that more accurate knowledge on inclinations and broad line region dynamics is needed to improve the black hole mass determination of AGN with the reverberation mapping technique.Comment: 12 pages including 4 figures, accepted for publication in The Astrophysical Journal Letter

    Water Content and Superconductivity in Na0.3CoO2*yH2O

    Full text link
    We report here the correlation between the water content and superconductivity in Na0.3CoO2*yH2O under the influences of elevated temperature and cold compression. The x-ray diffraction of the sample annealed at elevated temperatures indicates that intergrowths exist in the compound at equilibrium when 0.6 < y < 1.4. Its low-temperature diamagnetization varies linearly with y, but is insensitive to the intergrowth, indicative of quasi-2D superconductivity. The Tc-onset, especially, shifts only slightly with y. Our data from cold compressed samples, on the other hand, show that the water-loss non-proportionally suppresses the diamagnetization, which is suggestive of weak links.Comment: 10 pages, 10 figures; submitted to Physica C (August 13, 2003

    First-principles study of native point defects in Bi2Se3

    Full text link
    Using first-principles method within the framework of the density functional theory, we study the influence of native point defect on the structural and electronic properties of Bi2_2Se3_3. Se vacancy in Bi2_2Se3_3 is a double donor, and Bi vacancy is a triple acceptor. Se antisite (SeBi_{Bi}) is always an active donor in the system because its donor level (ε\varepsilon(+1/0)) enters into the conduction band. Interestingly, Bi antisite(BiSe1_{Se1}) in Bi2_2Se3_3 is an amphoteric dopant, acting as a donor when μ\mue_e<<0.119eV (the material is typical p-type) and as an acceptor when μ\mue_e>>0.251eV (the material is typical n-type). The formation energies under different growth environments (such as Bi-rich or Se-rich) indicate that under Se-rich condition, SeBi_{Bi} is the most stable native defect independent of electron chemical potential μ\mue_e. Under Bi-rich condition, Se vacancy is the most stable native defect except for under the growth window as μ\mue_e>>0.262eV (the material is typical n-type) and Δ\Deltaμ\muSe_{Se}<<-0.459eV(Bi-rich), under such growth windows one negative charged BiSe1_{Se1} is the most stable one.Comment: 7 pages, 4 figure

    A comprehensive numerical study of aerosol-cloud-precipitation interactions in marine stratocumulus

    Get PDF
    Three-dimensional large-eddy simulations (LES) with detailed bin-resolved microphysics are performed to explore the diurnal variation of marine stratocumulus (MSc) clouds under clean and polluted conditions. The sensitivity of the aerosol-cloud-precipitation interactions to variation of sea surface temperature, free tropospheric humidity, large-scale divergence rate, and wind speed is assessed. The comprehensive set of simulations corroborates previous studies that (1) with moderate/heavy drizzle, an increase in aerosol leads to an increase in cloud thickness; and (2) with non/light drizzle, an increase in aerosol results in a thinner cloud, due to the pronounced effect on entrainment. It is shown that for higher SST, stronger large-scale divergence, drier free troposphere, or lower wind speed, the cloud thins and precipitation decreases. The sign and magnitude of the Twomey effect, droplet dispersion effect, cloud thickness effect, and cloud optical depth susceptibility to aerosol perturbations (i.e., change in cloud optical depth to change in aerosol number concentration) are evaluated by LES experiments and compared with analytical formulations. The Twomey effect emerges as dominant in total cloud optical depth susceptibility to aerosol perturbations. The dispersion effect, that of aerosol perturbations on the cloud droplet size spectrum, is positive (i.e., increase in aerosol leads to spectral narrowing) and accounts for 3% to 10% of the total cloud optical depth susceptibility at nighttime, with greater influence in heavier drizzling clouds. The cloud thickness effect is negative (i.e., increase in aerosol leads to thinner cloud) for non/light drizzling cloud and positive for a moderate/heavy drizzling clouds; the cloud thickness effect contributes 5% to 22% of the nighttime total cloud susceptibility. Overall, the total cloud optical depth susceptibility ranges from ~0.28 to 0.53 at night; an increase in aerosol concentration enhances cloud optical depth, especially with heavier precipitation and in a more pristine environment. During the daytime, the range of magnitude for each effect is more variable owing to cloud thinning and decoupling. The good agreement between LES experiments and analytical formulations suggests that the latter may be useful in evaluations of the total cloud susceptibility. The ratio of the magnitude of the cloud thickness effect to that of the Twomey effect depends on cloud base height and cloud thickness in unperturbed (clean) clouds

    Experimentally obtaining the Likeness of Two Unknown Quantum States on an NMR Quantum Information Processor

    Full text link
    Recently quantum states discrimination has been frequently studied. In this paper we study them from the other way round, the likeness of two quantum states. The fidelity is used to describe the likeness of two quantum states. Then we presented a scheme to obtain the fidelity of two unknown qubits directly from the integral area of the spectra of the assistant qubit(spin) on an NMR Quantum Information Processor. Finally we demonstrated the scheme on a three-qubit quantum information processor. The experimental data are consistent with the theoretical expectation with an average error of 0.05, which confirms the scheme.Comment: 3 pages, 4 figure
    corecore