6,739 research outputs found
Quantum states in a magnetic anti-dot
We study a new system in which electrons in two dimensions are confined by a
non homogeneous magnetic field. The system consists of a heterostructure with
on top of it a superconducting disk. We show that in this system electrons can
be confined into a dot region. This magnetic anti-dot has the interesting
property that the filling of the dot is a discrete function of the magnetic
field. The circulating electron current inside and outside the anti-dot can be
in opposite direction for certain bound states. And those states exhibit a
diamagnetic to paramagnetic transition with increasing magnetic field. The
absorption spectrum consists of many peaks, some of which violate Kohn's
theorem, and which is due to the coupling of the center of mass motion with the
other degrees of freedom.Comment: 6 pages, 12 ps figure
From vortex molecules to the Abrikosov lattice in thin mesoscopic superconducting disks
Stable vortex states are studied in large superconducting thin disks (for
numerical purposes we considered with radius R = 50 \xi). Configurations
containing more than 700 vortices were obtained using two different approaches:
the nonlinear Ginzburg-Landau (GL) theory and the London approximation. To
obtain better agreement with results from the GL theory we generalized the
London theory by including the spatial variation of the order parameter
following Clem's ansatz. We find that configurations calculated in the London
limit are also stable within the Ginzburg-Landau theory for up to ~ 230
vortices. For large values of the vorticity (typically, L > 100), the vortices
are arranged in an Abrikosov lattice in the center of the disk, which is
surrounded by at least two circular shells of vortices. A Voronoi construction
is used to identify the defects present in the ground state vortex
configurations. Such defects cluster near the edge of the disk, but for large L
also grain boundaries are found which extend up to the center of the disk.Comment: 15 pages, 10 figures, RevTex4, submitted to Phys. Rev.
Confined magnetic guiding orbit states
We show how snake-orbit states which run along a magnetic edge can be
confined electrically. We consider a two-dimensional electron gas (2DEG)
confined into a quantum wire, subjected to a strong perpendicular and steplike
magnetic field . Close to this magnetic step new, spatially confined
bound states arise as a result of the lateral confinement and the magnetic
field step. The number of states, with energy below the first Landau level,
increases as becomes stronger or as the wire width becomes larger. These
bound states can be understood as an interference between two
counter-propagating one-dimensional snake-orbit states.Comment: 4 pages, 4 figure
Electron scattering on circular symmetric magnetic profiles in a two-dimensional electron gas
The quasi-bound and scattered states in a 2DEG subjected to a circular
symmetric steplike magnetic profile with zero average magnetic field are
studied. We calculate the effect of a random distribution of such identical
profiles on the transport properties of a 2DEG. We show that a nonzero Hall
resistance can be obtained, although , and that in some cases it
can even change sign as function of the Fermi energy or the magnetic field
strength. The Hall and magnetoresistance show pronounced resonances apart from
the Landau states of the inner core, corresponding to the so-called quasi-bound
snake orbit states.Comment: 7 pages, 8 figure
Exciton trapping in magnetic wire structures
The lateral magnetic confinement of quasi two-dimensional excitons into wire
like structures is studied. Spin effects are take into account and two
different magnetic field profiles are considered, which experimentally can be
created by the deposition of a ferromagnetic stripe on a semiconductor quantum
well with magnetization parallel or perpendicular to the grown direction of the
well. We find that it is possible to confine excitons into one-dimensional (1D)
traps. We show that the dependence of the confinement energy on the exciton
wave vector, which is related to its free direction of motion along the wire
direction, is very small. Through the application of a background magnetic
field it is possible to move the position of the trapping region towards the
edge of the ferromagnetic stripe or even underneath the stripe. The exact
position of this 1D exciton channel depends on the strength of the background
magnetic field and on the magnetic polarisation direction of the ferromagnetic
film.Comment: 10 pages, 7 figures, to be published in J. Phys: Condens. Matte
Control of the persistent currents in two interacting quantum rings through the Coulomb interaction and inter-ring tunneling
The persistent current in two vertically coupled quantum rings containing few
electrons is studied. We find that the Coulomb interaction between the rings in
the absence of tunneling affects the persistent current in each ring and the
ground state configurations. Quantum tunneling between the rings alters
significantly the ground state and the persistent current in the system.Comment: accepted for publication in Phys. Rev.
Age at quitting smoking as a predictor of risk of cardiovascular disease incidence independent of smoking status, time since quitting and pack-years
BACKGROUND Risk prediction for CVD events has been shown to vary according to current smoking status, pack-years smoked over a lifetime, time since quitting and age at quitting. The latter two are closely and inversely related. It is not known whether the age at which one quits smoking is an additional important predictor of CVD events. The aim of this study was to determine whether the risk of CVD events varied according to age at quitting after taking into account current smoking status, lifetime pack-years smoked and time since quitting. FINDINGS We used the Cox proportional hazards model to evaluate the risk of developing a first CVD event for a cohort of participants in the Framingham Offspring Heart Study who attended the fourth examination between ages 30 and 74 years and were free of CVD. Those who quit before the median age of 37 years had a risk of CVD incidence similar to those who were never smokers. The incorporation of age at quitting in the smoking variable resulted in better prediction than the model which had a simple current smoker/non-smoker measure and the one that incorporated both time since quitting and pack-years. These models demonstrated good discrimination, calibration and global fit. The risk among those quitting more than 5 years prior to the baseline exam and those whose age at quitting was prior to 44 years was similar to the risk among never smokers. However, the risk among those quitting less than 5 years prior to the baseline exam and those who continued to smoke until 44 years of age (or beyond) was two and a half times higher than that of never smokers. CONCLUSIONS Age at quitting improves the prediction of risk of CVD incidence even after other smoking measures are taken into account. The clinical benefit of adding age at quitting to the model with other smoking measures may be greater than the associated costs. Thus, age at quitting should be considered in addition to smoking status, time since quitting and pack-years when counselling individuals about their cardiovascular risk.This research was supported by an NHMRC health services
research grant (no. 465130), an NHMRC/NHF PhD scholarship and a
Vichealth Fellowship
Topological confinement in graphene bilayer quantum rings
We demonstrate the existence of localized electron and hole states in a
ring-shaped potential kink in biased bilayer graphene. Within the continuum
description, we show that for sharp potential steps the Dirac equation
describing carrier states close to the K (or K') point of the first Brillouin
zone can be solved analytically for a circular kink/anti-kink dot. The
solutions exhibit interfacial states which exhibit Aharonov-Bohm oscillations
as functions of the height of the potential step and/or the radius of the ring
- …