826 research outputs found
Spectroscopy in the 10 keV to 10 MeV range
Spectral lines in the 10 keV to 1 MeV range carry information of fundamental importance on many astronomical objects. Since the lines are directly related to specific physical processes this information is model independent and gives the physical conditions in the objects. At the sensitivities achieved to date, approximately 0.0001 to 0.001 phsq cm. sec for steady sources and approximately 0.01 to 1 ph/sq cm sec for transient sources, lines were detected from the galactic center, gamma-ray bursts and transients, X-ray pulsators, the Crab pulsar and solar flares. Future instruments with a factor of approximately 100 sensitivity improvement will allow detailed spectroscopic study of these classes of objects as well as supernova remnants, active galaxies and the interstellar medium. This sensitivity improvement can be obtained through the use of detector technology already proven in balloon and satellite instruments
HEAO-1 observations of gamma ray bursts
A search of data from the High Energy X-Ray and Low Energy Gamma Ray Experiment on HEAO-1 uncovered 14 gamma ray bursts. Nine of these events are reported for the first tiome. Except for the faintest events, all of the bursts detected by this experiment have been measured above an MeV, thereby confirming the hard spectral character of gamma ray burst spectra reported by SMM. Results give a burst rate of at least 105 per year above 6 times 10 to the minus 7th power ergs, which is consistent with previous measurements of burst frequency
Spectrum of the gamma-ray diffuse component observed from HEAO-1
The spectrum of the diffuse X and gamma ray background was measured between 15 keV and 4 MeV with the scintillation detectors aboard the HEAO 1 satellite. The apertures of the detectors were modulated on time scales of hours and the difference in counting rates measured the diffuse component flux. The observed spectrum is presented and compared with other measurements. At least two components are indicated, one below -100 keV and the other above. Possible origins are discussed
Locally Adaptive Shrinkage Priors for Trends and Breaks in Count Time Series
Non-stationary count time series characterized by features such as abrupt
changes and fluctuations about the trend arise in many scientific domains
including biophysics, ecology, energy, epidemiology, and social science
domains. Current approaches for integer-valued time series lack the flexibility
to capture local transient features while more flexible models for continuous
data types are inadequate for universal applications to integer-valued
responses such as settings with small counts. We present a modeling framework,
the negative binomial Bayesian trend filter (NB-BTF), that offers an adaptive
model-based solution to capturing multiscale features with valid integer-valued
inference for trend filtering. The framework is a hierarchical Bayesian model
with a dynamic global-local shrinkage process. The flexibility of the
global-local process allows for the necessary local regularization while the
temporal dependence induces a locally smooth trend. In simulation, the NB-BTF
outperforms a number of alternative trend filtering methods. Then, we
demonstrate the method on weekly power outage frequency in Massachusetts
townships. Power outage frequency is characterized by a nominal low level with
occasional spikes. These illustrations show the estimation of a smooth,
non-stationary trend with adequate uncertainty quantification.Comment: 31 pages, 6 figure
Spectra and positions of galactic gamma-ray sources
The UCSD/MIT Hard X-Ray and Low Energy Gamma-Ray Experiment aboard HEAO-1 scanned the galactic center region during three epochs in 1977 and 1978 from 13 to 180 keV. The results are presented from the scanning epoch of 1978 September. Twenty-two known 2 to 10 keV source positions were necessary for an acceptable fit to the data. The spectra of the 16 strongest, least confused sources are all consistent with power laws with photon spectral indices ranging from 2.1 to 7.2. Acceptable fits to thermal bremsstrahlung models are also possible for most sources. No one source in this survey can be extrapolated to higher energy to match the intensity of the gamma-ray continuum as measured by HEAO-1 large field of view detectors, which implies that the continuum is a composite of contributions from a number of sources
BATSE Gamma-Ray Burst Line Search: V. Probability of Detecting a Line in a Burst
The physical importance of the apparent discrepancy between the detections by
pre-BATSE missions of absorption lines in gamma-ray burst spectra and the
absence of a BATSE line detection necessitates a statistical analysis of this
discrepancy. This analysis requires a calculation of the probability that a
line, if present, will be detected in a given burst. However, the connection
between the detectability of a line in a spectrum and in a burst requires a
model for the occurrence of a line within a burst. We have developed the
necessary weighting for the line detection probability for each spectrum
spanning the burst. The resulting calculations require a description of each
spectrum in the BATSE database. With these tools we identify the bursts in
which lines are most likely to be detected. Also, by assuming a small frequency
with which lines occur, we calculate the approximate number of BATSE bursts in
which lines of various types could be detected. Lines similar to the Ginga
detections can be detected in relatively few BATSE bursts; for example, in only
~20 bursts are lines similar to the GB 880205 pair of lines detectable. Ginga
reported lines at ~20 and ~40 keV whereas the low energy cutoff of the BATSE
spectra is typically above 20 keV; hence BATSE's sensitivity to lines is less
than that of Ginga below 40 keV, and greater above. Therefore the probability
that the GB 880205 lines would be detected in a Ginga burst rather than a BATSE
burst is ~0.2. Finally, we adopted a more appropriate test of the significance
of a line feature.Comment: 20 pages, AASTeX 4.0, 5 figures, Ap.J. in pres
Gamma-ray burst spectroscopy capabilities of the BATSE/GRO experiment
A scintillation spectrometer is included in each of the eight BATSE/GRO detector modules, resulting in all-sky coverage for gamma-ray bursts. The scientific motivation, design and capabilities of these spectrometers for performing spectral observations over a wide range of gamma-ray energies and burst intensities are described
Spectral Hardness Decay with Respect to Fluence in BATSE Gamma-Ray Bursts
We have analyzed the evolution of the spectral hardness parameter Epk as a
function of fluence in gamma-ray bursts. We fit 41 pulses within 26 bursts with
the trend reported by Liang & Kargatis (1996) which found that Epk decays
exponentially with respect to photon fluence. We also fit these pulses with a
slight modification of this trend, where Epk decays linearly with energy
fluence. In both cases, we found the set of 41 pulses to be consistent with the
trend. For the latter trend, which we believe to be more physical, the
distribution of the decay constant is roughly log-normal, with a mean of 1.75
+/- 0.07 and a FWHM of 1.0 +/- 0.1. Regarding an earlier reported invariance in
the decay constant among different pulses in a single burst, we found
probabilities of 0.49 to 0.84 (depending on the test used) that such invariance
would occur by coincidence, most likely due to the narrow distribution of decay
constant values among pulses.Comment: 17 pages, 7 figure pages, 2 table pages, submitted to The
Astrophysical Journa
BATSE Gamma-Ray Burst Line Search: IV. Line Candidates from the Visual Search
We evaluate the significance of the line candidates identified by a visual
search of burst spectra from BATSE's Spectroscopy Detectors. None of the
candidates satisfy our detection criteria: an F-test probability less than
10^-4 for a feature in one detector and consistency among the detectors which
viewed the burst. Most of the candidates are not very significant, and are
likely to be fluctuations. Because of the expectation of finding absorption
lines, the search was biased towards absorption features. We do not have a
quantitative measure of the completeness of the search which would enable a
comparison with previous missions. Therefore a more objective computerized
search has begun.Comment: 18 pages AASTEX 4.0; 4 POSTSCRIPT figures on request from
[email protected]
- …