193 research outputs found

    Strong Pinning Enhancement in MgB2 Using Very Small Dy2O3 Additions

    Full text link
    0.5 to 5.0 wt.% Dy2O3 was in-situ reacted with Mg + B to form pinned MgB2. While Tc remained largely unchanged, Jc was strongly enhanced. The best sample (only 0.5 wt.% Dy2O3) had a Jc of 6.5 x 10^5 A/cm^2 at 6K, 1T and 3.5 x 10^5 A/cm^2 at 20K, 1T, around a factor of 4 higher compared to the pure sample, and equivalent to hot-pressed or nano-Si added MgB2 at below 1T. Even distributions of nano-scale precipitates of DyB4 and MgO were observed within the grains. The room temperature resistivity decreased with Dy2O3 indicative of improved grain connectivity.Comment: 13 pages, 4 figures and 1 tabl

    Improved Current Densities in MgB2 By Liquid-Assisted Sintering

    Full text link
    Polycrystalline MgB2 samples with GaN additions were prepared by reaction of Mg, B, and GaN powders. The presence of Ga leads to a low melting eutectic phase which allowed liquid phase sintering and produces plate-like grains. For low-level GaN additions (5% at. % or less), the critical transition temperature, Tc, remained unchanged and in 1T magnetic field, the critical current density, Jc was enhanced by a factor of 2 and 10, for temperatures of \~5K and 20K, respectively. The values obtained are approaching those of hot isostatically pressed samples.Comment: 12 pages, 1 table, 4 figures, accepted in Applied Physics Letter

    Thin-Film Trilayer Manganate Junctions

    Full text link
    Spin-dependent conductance across a manganate-barrier-manganate junction has recently been demonstrated. The junction is a La0.67_{0.67}Sr0.33_{0.33}MnO3_3% -SrTiO3_3-La0.67_{0.67} Sr0.33_{0.33}MnO3_3 trilayer device supporting current-perpendicular transport. Large magnetoresistance of up to a factor of five change was observed in these junctions at 4.2K in a relatively low field of the order of 100 Oe. Temperature and bias dependent studies revealed a complex junction interface structure whose materials physics has yet to be understood.Comment: 20 pages, 14 figures. To appear in Phil. Trans. R. Soc. Lond. A vol.356 (1998

    Normal state properties of high angle grain boundaries in (Y,Ca)Ba2Cu3O7-delta

    Full text link
    By lithographically fabricating an optimised Wheatstone bridge geometry, we have been able to make accurate measurements of the resistance of grain boundaries in Y1-xCaxBa2Cu3O7-d between the superconducting transition temperature, Tc, and room temperature. Below Tc the normal state properties were assessed by applying sufficiently high currents. The behaviour of the grain boundary resistance versus temperature and of the conductance versus voltage are discussed in the framework charge transport through a tunnel barrier. The influence of misorientation angle, oxygen content, and calcium doping on the normal state properties is related to changes of the height and shape of the grain boundary potential barrier.Comment: 17 pages, 1 table, 5 figures, submitted to PR

    Progress and perspective on different strategies to achieve wake-up-free ferroelectric hafnia and zirconia-based thin films

    Get PDF
    In the last decade orthorhombic hafnia and zirconia films have attracted tremendous attention arising from the discovery of ferroelectricity at the nanoscale. However, an initial wake-up pre-cycling is usually needed to achieve a ferroelectric behaviour in these films. Recently, different strategies, such as microstructure tailoring, defect, bulk and interface engineering, doping, NH3 plasma treatment and epitaxial growth, have been employed to obtain wake-up free orthorhombic ferroelectric hafnia and zirconia films. In this work we review recent developments in obtaining polar hafnia and zirconia-based thin films without the need of any wake-up cycling. In particular, we discuss the rhombohedral phase of hafnia/ zirconia, which under a constrained environment exhibits wake-up-free ferroelectric behaviour. This phase could have a strong impact on the current investigations of ferroelectric binary oxide materials and pave the way toward exploiting ferroelectric behaviour for next-generation memory and logic gate applications.This work was supported by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding Contract UIDB/04650/2020 and by DST-SERB, Govt. of India through Grant Nr. ECR/2017/00006. R. F. Negrea and L. Pintilie acknowledge funding through project CEPROFER/ PN-III-P4-ID-PCCF-2016-0047 (contract 16/2018, funded by UEFISCDI). J.L.M-D. thanks the Royal Academy of Engineering Chair in Emerging Technologies Grant, CIET1819_24, the EPSRC grant EP/T012218/1- ECCS – EPSRC, and the grant EU-H2020-ERC-ADG # 882929, EROS

    Angular dependent vortex pinning mechanisms in YBCO coated conductors and thin films

    Full text link
    We present a comparative study of the angular dependent critical current density in YBa2Cu3O7 films deposited on IBAD MgO and on single crystal MgO and SrTiO3 substrates. We identify three angular regimes where pinning is dominated by different types of correlated and uncorrelated defects. We show that those regimes are present in all cases, indicating that the pinning mechanisms are the same, but their extension and characteristics are sample dependent, reflecting the quantitative differences in texture and defect density. In particular, the more defective nature of the films on IBAD turns into an advantage as it results in stronger vortex pinning, demonstrating that the critical current density of the films on single crystals is not an upper limit for the performance of the IBAD coated conductors.Comment: 14 pages, 3 figures. Submitted to AP

    A new kind of vortex pinning in superconductor / ferromagnet nanocomposites

    Full text link
    This paper reports the observation of hysteresis in the vortex pinning in a superconductor / ferromagnetic epitaxial nanocomposite consisting of fcc Gd particles incorporated in a Nb matrix. We show that this hysteretic pinning is associated with magnetic reversal losses in the Gd particles and is fundamentally different in origin to pinning interactions previously observed for ferromagnetic particles or other microstructural features.Comment: Submitted to PR

    Cross-over between channeling and pinning at twin boundaries in YBa2Cu3O7 thin films

    Full text link
    The critical current (Jc) of highly twinned YBa2Cu3O7 films has been measured as a function of temperature, magnetic field and angle. For much of the parameter space we observe a strong suppression of Jc for fields in the twin boundary (TB) directions; this is quantitatively modeled as flux-cutting-mediated vortex channeling. For certain temperatures and fields a cross-over occurs to a regime in which channeling is blocked and the TBs act as planar pinning centers so that TB pinning enhances the overall Jc. In this regime, intrinsic pinning along the TBs is comparable to that between the twins.Comment: Submitted to PR
    • …
    corecore