2,736 research outputs found

    Time-dependent gravity in southern California, May 1974 - Apr 1979

    Get PDF
    Gravity measurements were coordinated with the long baseline three dimensional geodetic measurements of the Astronomical Radio Interferometric Earth Surveying project which used radio interferometry with extra-galactic radio sources. Gravity data from 28 of the stations had a single reading standard deviation of 11 microgal which gives a relative single determination between stations a standard deviation of 16 microgal. The largest gravity variation observed, 80 microgal, correlated with nearby waterwell variations and with smoothed rainfall. Smoothed rainfall data appeared to be a good indicator of the qualitative response of gravity to changing groundwater levels at other suprasediment stations, but frequent measurement of gravity at a station was essential until the quantitative calibration of the station's response to groundwater variations was accomplished

    Особенности морфологии уролитов жителей города Днепропетровска

    Get PDF
    Приведены первые результаты исследований морфологии уролитов жителей города Днепропетровска. Предложена типизация уролитов по особенностям их морфологии.Наведено перші результати досліджень морфології уролітов жителів міста Дніпропетровська. Запропонована типізація уролітов за особливостями їх морфології.The first results of studies of morphology nephrolyth residents of Dnipropetrovsk. A typing nephrolyth on the specifics of their morphology.

    Preparation of distilled and purified continuous variable entangled states

    Full text link
    The distribution of entangled states of light over long distances is a major challenge in the field of quantum information. Optical losses, phase diffusion and mixing with thermal states lead to decoherence and destroy the non-classical states after some finite transmission-line length. Quantum repeater protocols, which combine quantum memory, entanglement distillation and entanglement swapping, were proposed to overcome this problem. Here we report on the experimental demonstration of entanglement distillation in the continuous-variable regime. Entangled states were first disturbed by random phase fluctuations and then distilled and purified using interference on beam splitters and homodyne detection. Measurements of covariance matrices clearly indicate a regained strength of entanglement and purity of the distilled states. In contrast to previous demonstrations of entanglement distillation in the complementary discrete-variable regime, our scheme achieved the actual preparation of the distilled states, which might therefore be used to improve the quality of downstream applications such as quantum teleportation

    SCORPIO-II: Spectral indices of weak Galactic radio sources

    Get PDF
    In the next few years the classification of radio sources observed by the large surveys will be a challenging problem, and spectral index is a powerful tool for addressing it. Here we present an algorithm to estimate the spectral index of sources from multiwavelength radio images. We have applied our algorithm to SCORPIO (Umana et al. 2015), a Galactic Plane survey centred around 2.1 GHz carried out with ATCA, and found we can measure reliable spectral indices only for sources stronger than 40 times the rms noise. Above a threshold of 1 mJy, the source density in SCORPIO is 20 percent greater than in a typical extra-galactic field, like ATLAS (Norris et al. 2006), because of the presence of Galactic sources. Among this excess population, 16 sources per square degree have a spectral index of about zero, suggesting optically thin thermal emission such as Hii regions and planetary nebulae, while 12 per square degree present a rising spectrum, suggesting optically thick thermal emission such as stars and UCHii regions.Comment: 12 pages, 11 figures, accepted by MNRA

    Complete Primate Skeleton from the Middle Eocene of Messel in Germany: Morphology and Paleobiology

    Get PDF
    The best European locality for complete Eocene mammal skeletons is Grube Messel, near Darmstadt, Germany. Although the site was surrounded by a para-tropical rain forest in the Eocene, primates are remarkably rare there, and only eight fragmentary specimens were known until now. Messel has now yielded a full primate skeleton. The specimen has an unusual history: it was privately collected and sold in two parts, with only the lesser part previously known. The second part, which has just come to light, shows the skeleton to be the most complete primate known in the fossil record.We describe the morphology and investigate the paleobiology of the skeleton. The specimen is described as Darwinius masillae n.gen. n.sp. belonging to the Cercamoniinae. Because the skeleton is lightly crushed and bones cannot be handled individually, imaging studies are of particular importance. Skull radiography shows a host of teeth developing within the juvenile face. Investigation of growth and proportion suggest that the individual was a weaned and independent-feeding female that died in her first year of life, and might have attained a body weight of 650-900 g had she lived to adulthood. She was an agile, nail-bearing, generalized arboreal quadruped living above the floor of the Messel rain forest.Darwinius masillae represents the most complete fossil primate ever found, including both skeleton, soft body outline and contents of the digestive tract. Study of all these features allows a fairly complete reconstruction of life history, locomotion, and diet. Any future study of Eocene-Oligocene primates should benefit from information preserved in the Darwinius holotype. Of particular importance to phylogenetic studies, the absence of a toilet claw and a toothcomb demonstrates that Darwinius masillae is not simply a fossil lemur, but part of a larger group of primates, Adapoidea, representative of the early haplorhine diversification

    Characterization of an outbreak of equine coronavirus infection in adult horses in Switzerland.

    Get PDF
    INTRODUCTION Outbreaks of equine coronavirus (ECoV) infections have been described in different parts of the world including Europe. The aim of this report was to describe clinical signs, diagnostic work-up and outcome of the first documented outbreak of ECoV in Switzerland in order to raise the awareness for the disease and its various clinical presentations. The outbreak occurred on a farm with 26 horses. Of these, seven horses developed clinical disease ranging from mild signs such as fever and anorexia to severe signs of acute colitis. One horse died due to severe endotoxemia and circulatory shock secondary to severe acute necrotizing enteritis and colitis. Out of the 26 horses, five horses tested positive for ECoV, including two ponies without any clinical signs of infection. The low number of positive cases should nevertheless be interpreted with caution as testing was only performed on one occasion, over a month after the onset of clinical signs in the first suspected case. This report highlights the importance of diagnostic testing and early implementation of biosecurity measures on a farm with an ECoV outbreak. It should furthermore raise the awareness for unspecific and mild clinical signs such as fever and anorexia in affected animals that are potentially able to spread the disease

    Time-Translation Invariance of Scattering Maps and Blue-Shift Instabilities on Kerr Black Hole Spacetimes

    Full text link
    In this paper, we provide an elementary, unified treatment of two distinct blue-shift instabilities for the scalar wave equation on a fixed Kerr black hole background: the celebrated blue-shift at the Cauchy horizon (familiar from the strong cosmic censorship conjecture) and the time-reversed red-shift at the event horizon (relevant in classical scattering theory). Our first theorem concerns the latter and constructs solutions to the wave equation on Kerr spacetimes such that the radiation field along the future event horizon vanishes and the radiation field along future null infinity decays at an arbitrarily fast polynomial rate, yet, the local energy of the solution is infinite near any point on the future event horizon. Our second theorem constructs solutions to the wave equation on rotating Kerr spacetimes such that the radiation field along the past event horizon (extended into the black hole) vanishes and the radiation field along past null infinity decays at an arbitrarily fast polynomial rate, yet, the local energy of the solution is infinite near any point on the Cauchy horizon. The results make essential use of the scattering theory developed in [M. Dafermos, I. Rodnianski and Y. Shlapentokh-Rothman, A scattering theory for the wave equation on Kerr black hole exteriors, preprint (2014) available at \url{http://arxiv.org/abs/1412.8379}] and exploit directly the time-translation invariance of the scattering map and the non-triviality of the transmission map.Comment: 26 pages, 12 figure

    High quality anti-relaxation coating material for alkali atom vapor cells

    Full text link
    We present an experimental investigation of alkali atom vapor cells coated with a high quality anti-relaxation coating material based on alkenes. The prepared cells with single compound alkene based coating showed the longest spin relaxation times which have been measured up to now with room temperature vapor cells. Suggestions are made that chemical binding of a cesium atom and an alkene molecule by attack to the C=C bond plays a crucial role in such improvement of anti-relaxation coating quality

    Cold gas outflows from the Small Magellanic Cloud traced with ASKAP

    Full text link
    Feedback from massive stars plays a critical role in the evolution of the Universe by driving powerful outflows from galaxies that enrich the intergalactic medium and regulate star formation. An important source of outflows may be the most numerous galaxies in the Universe: dwarf galaxies. With small gravitational potential wells, these galaxies easily lose their star-forming material in the presence of intense stellar feedback. Here, we show that the nearby dwarf galaxy, the Small Magellanic Cloud (SMC), has atomic hydrogen outflows extending at least 2 kiloparsecs (kpc) from the star-forming bar of the galaxy. The outflows are cold, T<400 KT<400~{\rm K}, and may have formed during a period of active star formation 256025 - 60 million years (Myr) ago. The total mass of atomic gas in the outflow is 107\sim 10^7 solar masses, M{\rm M_{\odot}}, or 3\sim 3% of the total atomic gas of the galaxy. The inferred mass flux in atomic gas alone, M˙HI0.21.0 M yr1\dot{M}_{HI}\sim 0.2 - 1.0~{\rm M_{\odot}~yr^{-1}}, is up to an order of magnitude greater than the star formation rate. We suggest that most of the observed outflow will be stripped from the SMC through its interaction with its companion, the Large Magellanic Cloud (LMC), and the Milky Way, feeding the Magellanic Stream of hydrogen encircling the Milky Way.Comment: Published in Nature Astronomy, 29 October 2018, http://dx.doi.org/10.1038/s41550-018-0608-
    corecore