1,112 research outputs found

    Quantum sensing with arbitrary frequency resolution

    Full text link
    Quantum sensing takes advantage of well controlled quantum systems for performing measurements with high sensitivity and precision. We have implemented a concept for quantum sensing with arbitrary frequency resolution, independent of the qubit probe and limited only by the stability of an external synchronization clock. Our concept makes use of quantum lock-in detection to continuously probe a signal of interest. Using the electronic spin of a single nitrogen vacancy center in diamond, we demonstrate detection of oscillating magnetic fields with a frequency resolution of 70 uHz over a MHz bandwidth. The continuous sampling further guarantees an excellent sensitivity, reaching a signal-to-noise ratio in excess of 10,000:1 for a 170 nT test signal measured during a one-hour interval. Our technique has applications in magnetic resonance spectroscopy, quantum simulation, and sensitive signal detection.Comment: Manuscript resubmitted to Science. Includes Supplementary Material

    Three-dimensional nuclear spin positioning using coherent radio-frequency control

    Full text link
    Distance measurements via the dipolar interaction are fundamental to the application of nuclear magnetic resonance (NMR) to molecular structure determination, but they only provide information on the absolute distance rr and polar angle θ\theta between spins. In this Letter, we present a protocol to also retrieve the azimuth angle ϕ\phi. Our method relies on measuring the nuclear precession phase after application of a control pulse with a calibrated external radio-frequency coil. We experimentally demonstrate three-dimensional positioning of individual carbon-13 nuclear spins in a diamond host crystal relative to the central electronic spin of a single nitrogen-vacancy center. The ability to pinpoint three-dimensional nuclear locations is central for realizing a nanoscale NMR technique that can image the structure of single molecules with atomic resolution.Comment: 5 pages, 4 figure

    High-bandwidth microcoil for fast nuclear spin control

    Full text link
    The active manipulation of nuclear spins with radio-frequency (RF) coils is at the heart of nuclear magnetic resonance (NMR) spectroscopy and spin-based quantum devices. Here, we present a microcoil transmitter system designed to generate strong RF pulses over a broad bandwidth, allowing for fast spin rotations on arbitrary nuclear species. Our design incorporates: (i) a planar multilayer geometry that generates a large field of 4.35 mT per unit current, (ii) a 50 Ohm transmission circuit with a broad excitation bandwidth of approximately 20 MHz, and (iii) an optimized thermal management for removal of Joule heating. Using individual 13C nuclear spins in the vicinity of a diamond nitrogen-vacancy (NV) center as a test system, we demonstrate Rabi frequencies exceeding 70 kHz and nuclear pi/2 rotations within 3.4 us. The extrapolated values for 1H spins are about 240 kHz and 1 us, respectively. Beyond enabling fast nuclear spin manipulations, our microcoil system is ideally suited for the incorporation of advanced pulse sequences into micro- and nanoscale NMR detectors operating at low (<1 T) magnetic field.Comment: 8 pages, 5 figures. Submitted to Rev. Sci. Inst

    Spurious harmonic response of multipulse quantum sensing sequences

    Full text link
    Multipulse sequences based on Carr-Purcell decoupling are frequently used for narrow-band signal detection in single spin magnetometry. We have analyzed the behavior of multipulse sensing sequences under real-world conditions, including finite pulse durations and the presence of detunings. We find that these non-idealities introduce harmonics to the filter function, allowing additional frequencies to pass the filter. In particular, we find that the XY family of sequences can generate signals at the 2fac, 4fac and 8fac harmonics and their odd subharmonics, where fac is the ac signal frequency. Consideration of the harmonic response is especially important for diamond-based nuclear spin sensing where the NMR frequency is used to identify the nuclear spin species, as it leads to ambiguities when several isotopes are present.Comment: 6 pages, 7 figure

    Nuclear spin relaxation induced by a mechanical resonator

    Full text link
    We report on measurements of the spin lifetime of nuclear spins strongly coupled to a micromechanical cantilever as used in magnetic resonance force microscopy. We find that the rotating-frame correlation time of the statistical nuclear polarization is set by the magneto-mechanical noise originating from the thermal motion of the cantilever. Evidence is based on the effect of three parameters: (1) the magnetic field gradient (the coupling strength), (2) the Rabi frequency of the spins (the transition energy), and (3) the temperature of the low-frequency mechanical modes. Experimental results are compared to relaxation rates calculated from the spectral density of the magneto-mechanical noise.Comment: 4 pages, 4 figure

    Evolutionary implications of a high selfing rate in the freshwater snail Lymnaea truncatula.

    Get PDF
    Self-compatible hermaphroditic organisms that mix self-fertilization and outcrossing are of great interest for investigating the evolution of mating systems. We investigate the evolution of selfing in Lymnaea truncatula, a self-compatible hermaphroditic freshwater snail. We first analyze the consequences of selfing in terms of genetic variability within and among populations and then investigate how these consequences along with the species ecology (harshness of the habitat and parasitism) might govern the evolution of selfing. Snails from 13 localities (classified as temporary or permanent depending on their water availability) were sampled in western Switzerland and genotyped for seven microsatellite loci. F(IS) (estimated on adults) and progeny array analyses (on hatchlings) provided similar selfing rate estimates of 80%. Populations presented a low polymorphism and were highly differentiated (F(ST) = 0.58). Although the reproductive assurance hypothesis would predict higher selfing rate in temporary populations, no difference in selfing level was observed between temporary and permanent populations. However, allelic richness and gene diversity declined in temporary habitats, presumably reflecting drift. Infection levels varied but were not simply related to either estimated population selfing rate or to differences in heterozygosity. These findings and the similar selfing rates estimated for hatchlings and adults suggest that within-population inbreeding depression is low in L. truncatula

    Feedback cooling of a cantilever's fundamental mode below 5 mK

    Full text link
    We cool the fundamental mechanical mode of an ultrasoft silicon cantilever from a base temperature of 2.2 K to 2.9 +/- 0.3 mK using active optomechanical feedback. The lowest observed mode temperature is consistent with limits determined by the properties of the cantilever and by the measurement noise. For high feedback gain, the driven cantilever motion is found to suppress or "squash" the optical interferometer intensity noise below the shot noise level.Comment: 4 pages, 6 figure
    corecore