220 research outputs found

    Revision of the Eocene \u27Platyrhina\u27 species from the Bolca LagerstÀtte (Italy) reveals the first panray (Batomorphii: Zanobatidae) in the fossil record

    Get PDF
    The fossil-LagerstĂ€tte of Bolca (Italy) is well known for the diversity and exquisite preservation of its bony and cartilaginous fishes documenting tropical shallow-water marine environments associated with coral reefs in the western Tethys during the early Eocene. In this study, the taxonomic, systematic and phylogenetic position of two batoid species traditionally assigned to the living thornback ray genus Platyrhina is re-evaluated. †Platyrhina bolcensis Heckel, 1851 is recognized as a separate species of the Platyrhinidae because of its plate-like antorbital cartilage with an irregular outline and a small horn on the nasal capsules. Also, the rostral cartilage does not reach the anterior border of the disc. Support for the placement of this species within the new genus †Eoplatyrhina gen. nov. is based on a combination of morphological and meristic features (e.g. nasal capsules at right angles to the rostrum; large space between the hyomandibulae and mandibular arch; approximately 132 vertebral centra; 15–16 rib pairs; 81–87 pectoral radials; 18–21 pelvic radials; short, straight and stout claspers; 40–50 caudal-fin radials; thorns absent). A second species, †Platyrhina egertoni (De Zigno, 1876), is more closely related to the living panray Zanobatus than Platyrhina and is assigned here to †Plesiozanobatus gen. nov. because of a combination of characters that support its placement within the family Zanobatidae (tail stout and short, distinctly demarcated from disc; two dorsal fins and complete caudal fin; small dermal denticles and scattered thorns covering disc and tail; rostral cartilage absent; nasal capsules without horn-like processes; mesopterygium absent). The systematic position of a third taxon, †Platyrhina gigantea (Blainville, 1818), is currently impossible to establish due to the poor preservation of the only known specimen, and therefore we propose to consider it a nomen dubium. Palaeoecological and biogeographic features of the Eocene platyrhinids and zanobatids from Bolca are also discussed

    Early development of rostrum saw-teeth in a fossil ray tests classical theories of the evolution of vertebrate dentitions

    Get PDF
    In classical theory, teeth of vertebrate dentitions evolved from co-option of external skin denticles into the oral cavity. This hypothesis predicts that ordered tooth arrangement and regulated replacement in the oral dentition were also derived from skin denticles. The fossil batoid ray Schizorhiza stromeri (Chondrichthyes; Cretaceous) provides a test of this theory. Schizorhiza preserves an extended cartilaginous rostrum with closely spaced, alternating saw-teeth, different from sawfish and sawsharks today. Multiple replacement teeth reveal unique new data from micro-CT scanning, showing how the 'cone-in-cone' series of ordered saw-teeth sets arrange themselves developmentally, to become enclosed by the roots of pre-existing saw-teeth. At the rostrum tip, newly developing saw-teeth are present, as mineralized crown tips within a vascular, cartilaginous furrow; these reorient via two 90° rotations then relocate laterally between previously formed roots. Saw-tooth replacement slows mid-rostrum where fewer saw-teeth are regenerated. These exceptional developmental data reveal regulated order for serial self-renewal, maintaining the saw edge with ever-increasing saw-tooth size. This mimics tooth replacement in chondrichthyans, but differs in the crown reorientation and their enclosure directly between roots of predecessor saw-teeth. Schizorhiza saw-tooth development is decoupled from the jaw teeth and their replacement, dependent on a dental lamina. This highly specialized rostral saw, derived from diversification of skin denticles, is distinct from the dentition and demonstrates the potential developmental plasticity of skin denticles

    The Phylogeny of Rays and Skates (Chondrichthyes: Elasmobranchii) Based on Morphological Characters Revisited.

    Get PDF
    Elasmobranchii are relatively well-studied. However, numerous phylogenetic uncertainties about their relationships remain. Here, we revisit the phylogenetic evidence based on a detailed morphological re-evaluation of all the major extant batomorph clades (skates and rays), including several holomorphic fossil taxa from the Palaeozoic, Mesozoic and Cenozoic, and an extensive outgroup sampling, which includes sharks, chimaeras and several other fossil chondrichthyans. The parsimony and maximum-likelihood analyses found more resolved but contrasting topologies, with the Bayesian inference tree neither supporting nor disfavouring any of them. Overall, the analyses result in similar clade compositions and topologies, with the Jurassic batomorphs forming the sister clade to all the other batomorphs, whilst all the Cretaceous batomorphs are nested within the remaining main clades. The disparate arrangements recovered under the different criteria suggest that a detailed study of Jurassic taxa is of utmost importance to present a more consistent topology in the deeper nodes, as issues continue to be present when analysing those clades previously recognized only by molecular analyses (e.g., Rhinopristiformes and Torpediniformes). The consistent placement of fossil taxa within specific groups by the different phylogenetic criteria is promising and indicates that the inclusion of more fossil taxa in the present matrix will likely not cause loss of resolution, therefore suggesting that a strong phylogenetic signal can be recovered from fossil taxa

    Tooth mineralization and histology patterns in extinct and extant snaggletooth sharks, Hemipristis (Carcharhiniformes, Hemigaleidae)—Evolutionary significance or ecological adaptation?

    Get PDF
    Shark jaws exhibit teeth that are arranged into distinct series and files and display great diversities in shapes and structures, which not only is related to their function (grasping, cutting, crushing) during feeding, but also bear a strong phylogenetic signal. So far, most research on the relationship between shark teeth and feeding ecology and systematics focused on the external tooth morphology only. Although the tooth histology of sharks has been examined since the early 19th century, its functional and systematic implications are still ambiguous. Shark teeth normally consist of either a porous, cellular dentine, osteodentine (in lamniform sharks and some batoids) or a dense layer of orthodentine (known from different sharks). Sharks of the order Carcharhiniformes, comprising ca. 60% of all extant shark species, are known to have orthodont teeth, with a single exception—the snaggletooth shark, Hemipristis elongata. High resolution micro-CT images of jaws and teeth from selected carcharhiniform sharks (including extant and fossil snaggletooth sharks) and tooth sections of teeth of Hemipristis, other carcharhiniform and lamniform sharks, have revealed that (1) Hemipristis is indeed the only carcharhiniform shark filling its pulp cavity with osteodentine in addition to orthodentine, (2) the tooth histology of Hemipristis elongata differs from the osteodont histotype, which evolved in lamniform sharks and conversely represents a modified orthodonty, and (3) this modified orthodonty was already present in extinct Hemipristis species but the mineralization sequence has changed over time. Our results clearly show the presence of a third tooth histotype—the pseudoosteodont histotype, which is present in Hemipristis. The unique tooth histology of lamniform sharks might provide a phylogenetic signal for this group, but more research is necessary to understand the phylogenetic importance of tooth histology in sharks in general

    Development and evolution of tooth renewal in neoselachian sharks as a model for transformation in chondrichthyan dentitions

    Get PDF
    A defining feature of dentitions in modern sharks and rays is the regulated pattern order that generates multiple replacement teeth. These are arranged in labio‐lingual files of replacement teeth that form in sequential time order both along the jaw and within successively initiated teeth in a deep dental lamina. Two distinct adult dentitions have been described: alternate, in which timing of new teeth alternates between two adjacent files, each erupting separately, and the other arranged as single files, where teeth of each file are timed to erupt together, in some taxa facilitating similarly timed teeth to join to form a cutting blade. Both are dependent on spatiotemporally regulated formation of new teeth. The adult Angel shark Squatina (Squalomorphii) exemplifies a single file dentition, but we obtained new data on the developmental order of teeth in the files of Squatina embryos, showing alternate timing of tooth initiation. This was based on micro‐CT scans revealing that the earliest mineralised teeth at the jaw margin and their replacements in file pairs (odd and even jaw positions) alternate in their initiation timing. Along with Squatina, new observations from other squalomorphs such as Hexanchus and Chlamydoselachus, together with representatives of the sister group Galeomorphii, have established that the alternate tooth pattern (initiation time and replacement order) characterises the embryonic dentition of extant sharks; however, this can change in adults. These character states were plotted onto a recent phylogeny, demonstrating that the Squalomorphii show considerable plasticity of dental development. We propose a developmental‐evolutionary model to allow change from the alternate to a single file alignment of replacement teeth. This establishes new dental morphologies in adult sharks from inherited alternate order

    Barremian and Aptian (Cretaceous) sharks and rays from Speeton, Yorkshire, north-east England

    Get PDF
    Bulk sampling of a number of horizons within the upper part of the Speeton Clay Type section has produced teeth and other remains of sharks and rays from several poorly studied horizons. At least 10 shark and two ray species were recorded, with two sharks, Pteroscyllium speetonensis and Palaeobrachaelurus mitchelli, being described as new. The oldest occurrences of the family Anacoracadae and the genus Pteroscyllium, as well as the youngest occurrence of the genus Palaeobrachaelurus, were recorded. The palaeoenvironmental significance of the faunas is briefly discussed
    • 

    corecore