623 research outputs found

    Evidence for phase formation in potassium intercalated 1,2;8,9-dibenzopentacene

    Full text link
    We have prepared potassium intercalated 1,2;8,9-dibenzopentacene films under vacuum conditions. The evolution of the electronic excitation spectra upon potassium addition as measured using electron energy-loss spectroscopy clearly indicate the formation of particular doped phases with compositions Kx_xdibenzopentacene (xx = 1,2,3). Moreover, the stability of these phases as a function of temperature has been explored. Finally, the electronic excitation spectra also give insight into the electronic ground state of the potassium doped 1,2;8,9-dibenzopentacene films.Comment: 6 pages, 5 figures. arXiv admin note: text overlap with arXiv:1201.200

    Signatures of electronic polarons in La1−x_{1-x}Sr1+x_{1+x}MnO4_4 observed by electron energy-loss spectroscopy

    Full text link
    The dielectric properties of La1−x_{1-x}Sr1+x_{1+x}MnO4_4 single crystals with x = 0, 0.125, 0.25, and 0.5 were studied by means of electron energy-loss spectroscopy as a function of temperature and momentum transfer. A clear signature of the doped holes is observed around 1.65 eV energy loss, where spectral weight emerges with increasing x. For all x≠0x \neq 0, this doping-induced excitation can propagate within the ab-plane, as revealed by a clear upward dispersion of the corresponding loss peak with increasing momentum transfer. The hole-induced excitation also shifts to higher energies with the onset of magnetic correlations for x = 0.5, implying a strong coupling of charge and spin dynamics. We conclude that (i) the loss feature at 1.65 eV is a signature of electronic polarons, which are created around doped holes, and that (ii) this low-energy excitation involves the charge transfer between manganese and oxygen. The finite dispersion of these excitations further indicates significant polaron-polaron interactions.Comment: 7 pages, 4 figure

    Plasmons and Interband Transitions of Ca11_{11}Sr3_3Cu24_{24}O41_{41} investigated by Electron Energy-Loss Spectroscopy

    Full text link
    Electron energy-loss spectroscopy studies have been performed in order to get a deeper insight into the electronic structure and elementary excitations of the two-leg ladder system Ca11_{11}Sr3_3Cu24_{24}O41_{41}. We find a strong anisotropy of the loss function for momentum transfers along the a and c-crystallographic axis, and a remarkable linear plasmon dispersion for a momentum transfer parallel to the legs of the ladders. The investigated spectral features are attributed to localized and delocalized charge-transfer excitations and the charge carrier plasmon. The charge carrier plasmon position and dispersion in the long wave-length limit agree well with expectations based upon the band structure of the two-leg ladder, while the observed quasi-linear plasmon dispersion might be related to the peculiar properties of underdoped cuprates in general.Comment: 16 pages, 8 figure

    Fine-tuning the functional properties of carbon nanotubes via the interconversion of encapsulated molecules

    Full text link
    Tweaking the properties of carbon nanotubes is a prerequisite for their practical applications. Here we demonstrate fine-tuning the electronic properties of single-wall carbon nanotubes via filling with ferrocene molecules. The evolution of the bonding and charge transfer within the tube is demonstrated via chemical reaction of the ferrocene filler ending up as secondary inner tube. The charge transfer nature is interpreted well within density functional theory. This work gives the first direct observation of a fine-tuned continuous amphoteric doping of single-wall carbon nanotubes

    Transition from a Tomonaga-Luttinger liquid to a Fermi liquid in potassium intercalated bundles of single wall carbon nanotubes

    Full text link
    We report on the first direct observation of a transition from a Tomonaga-Luttinger liquid to a Fermi liquid behavior in potassium intercalated mats of single wall carbon nanotubes (SWCNT). Using high resolution photoemission spectroscopy an analysis of the spectral shape near the Fermi level reveals a Tomonaga-Luttinger liquid power law scaling in the density of states for the pristine sample and for low dopant concentration. As soon as the doping is high enough to fill bands of the semiconducting tubes a distinct transition to a bundle of only metallic SWCNT with a scaling behavior of a normal Fermi liquid occurs. This can be explained by a strong screening of the Coulomb interaction between charge carriers and/or an increased hopping matrix element between the tubes.Comment: 5 pages, 4 figure

    Manifestation of spin-charge separation in the dynamic dielectric response of one--dimensional Sr2CuO3

    Get PDF
    We have determined the dynamical dielectric response of a one-dimensional, correlated insulator by carrying out electron energy-loss spectroscopy on Sr2CuO3 single crystals. The observed momentum and energy dependence of the low-energy features, which correspond to collective transitions across the gap, are well described by an extended one-band Hubbard model with moderate nearest neighbor Coulomb interaction strength. An exciton-like peak appears with increasing momentum transfer. These observations provide experimental evidence for spin-charge separation in the relevant excitations of this compound, as theoretically expected for the one-dimensional Hubbard model.Comment: RevTex, 4 pages+2 figures, to appear in PRL (July 13
    • …
    corecore