411 research outputs found
Strongly residual coordinates over A[x]
For a domain A of characteristic zero, a polynomial f over A[x] is called a
strongly residual coordinate if f becomes a coordinate (over A) upon going
modulo x, and f becomes a coordinate upon inverting x. We study the question of
when a strongly residual coordinate is a coordinate, a question closely related
to the Dolgachev-Weisfeiler conjecture. It is known that all strongly residual
coordinates are coordinates for n=2 . We show that a large class of strongly
residual coordinates that are generated by elementaries upon inverting x are in
fact coordinates for arbitrary n, with a stronger result in the n=3 case. As an
application, we show that all Venereau-type polynomials are 1-stable
coordinates.Comment: 15 pages. Some minor clarifications and notational improvements from
the first versio
Langevin equation for the extended Rayleigh model with an asymmetric bath
In this paper a one-dimensional model of two infinite gases separated by a
movable heavy piston is considered. The non-linear Langevin equation for the
motion of the piston is derived from first principles for the case when the
thermodynamic parameters and/or the molecular masses of gas particles on left
and right sides of the piston are different. Microscopic expressions involving
time correlation functions of the force between bath particles and the piston
are obtained for all parameters appearing in the non-linear Langevin equation.
It is demonstrated that the equation has stationary solutions corresponding to
directional fluctuation-induced drift in the absence of systematic forces. In
the case of ideal gases interacting with the piston via a quadratic repulsive
potential, the model is exactly solvable and explicit expressions for the
kinetic coefficients in the non-linear Langevin equation are derived. The
transient solution of the non-linear Langevin equation is analyzed
perturbatively and it is demonstrated that previously obtained results for
systems with the hard-wall interaction are recovered.Comment: 10 pages. To appear in Phys. Rev.
Structure Factor and Electronic Structure of Compressed Liquid Rubidium
We have applied the quantal hypernetted-chain equations in combination with
the Rosenfeld bridge-functional to calculate the atomic and the electronic
structure of compressed liquid-rubidium under high pressure (0.2, 2.5, 3.9, and
6.1 GPa); the calculated structure factors are in good agreement with
experimental results measured by Tsuji et al. along the melting curve. We found
that the Rb-pseudoatom remains under these high pressures almost unchanged with
respect to the pseudoatom at room pressure; thus, the effective ion-ion
interaction is practically the same for all pressure-values. We observe that
all structure factors calculated for this pressure-variation coincide almost
into a single curve if wavenumbers are scaled in units of the Wigner-Seitz
radius although no corresponding scaling feature is observed in the
effective ion-ion interaction.This scaling property of the structure factors
signifies that the compression in liquid-rubidium is uniform with increasing
pressure; in absolute Q-values this means that the first peak-position ()
of the structure factor increases proportionally to ( being the
specific volume per ion), as was experimentally observed by Tsuji et al.Comment: 18 pages, 11 figure
Beta-glucan reflects liver injury after preservation and transplantation in dogs.
Graft failure and extrahepatic organ complications, which frequently develop after transplantation, may be related to inflammatory mediators stimulated by endotoxin (ET). The role of endotoxemia after liver transplantation is controversial and may depend upon differences in the ET assay method used in the various contradicting studies. While the standard Limulus amebocyte lysate (LAL) is reactive for ET and beta-glucan, a novel turbidimetric assay method enables separate determinations of ET and beta-glucan. Beagle dogs undergoing orthotopic liver transplantation were divided into two groups. In Group I (n = 6) the grafts were transplanted immediately and in Group II (n = 6) grafts were preserved for 48 h in University of Wisconsin (UW) solution. Animals received cyclosporine immunosuppression and were followed for 14 days. Daily measurements of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH) were performed. Samples for ET and beta-glucan measurement were collected serially and processed using the turbidimetric assay method. While no graft failure was seen in Group I, three of six Group II animals died from graft failure within 1 day after transplantation. Preservation and reperfusion injury was much more severe in the Group II grafts than in Group I grafts. While endotoxemia could not be detected, postoperative beta-glucan levels (undetectable pretransplant) were seen in both groups. Beta-glucan levels were much higher in Group II grafts than in Group I grafts, and correlated with the severity of liver damage. In conclusion, this study shows that beta-glucan, instead of ET, appears during the early posttransplant period. We believe that posttransplant elevation of beta-glucan is related to liver damage, especially endothelial damage by preservation and reperfusion
Evidence of two viscous relaxation processes in the collective dynamics of liquid lithium
New inelastic X-ray scattering experiments have been performed on liquid
lithium in a wide wavevector range. With respect to the previous measurements,
the instrumental resolution, improved up to 1.5 meV, allows to accurately
investigate the dynamical processes determining the observed shape of the the
dynamic structure factor, . A detailed analysis of the lineshapes
shows the co-existence of relaxation processes with both a slow and a fast
characteristic timescales, and therefore that pictures of the relaxation
mechanisms based on a simple viscoelastic model must be abandoned.Comment: 5 pages, 4 .PS figure
Nucleus-Electron Model for States Changing from a Liquid Metal to a Plasma and the Saha Equation
We extend the quantal hypernetted-chain (QHNC) method, which has been proved
to yield accurate results for liquid metals, to treat a partially ionized
plasma. In a plasma, the electrons change from a quantum to a classical fluid
gradually with increasing temperature; the QHNC method applied to the electron
gas is in fact able to provide the electron-electron correlation at arbitrary
temperature. As an illustrating example of this approach, we investigate how
liquid rubidium becomes a plasma by increasing the temperature from 0 to 30 eV
at a fixed normal ion-density . The electron-ion
radial distribution function (RDF) in liquid Rb has distinct inner-core and
outer-core parts. Even at a temperature of 1 eV, this clear distinction remains
as a characteristic of a liquid metal. At a temperature of 3 eV, this
distinction disappears, and rubidium becomes a plasma with the ionization 1.21.
The temperature variations of bound levels in each ion and the average
ionization are calculated in Rb plasmas at the same time. Using the
density-functional theory, we also derive the Saha equation applicable even to
a high-density plasma at low temperatures. The QHNC method provides a procedure
to solve this Saha equation with ease by using a recursive formula; the charge
population of differently ionized species are obtained in Rb plasmas at several
temperatures. In this way, it is shown that, with the atomic number as the only
input, the QHNC method produces the average ionization, the electron-ion and
ion-ion RDF's, and the charge population which are consistent with the atomic
structure of each ion for a partially ionized plasma.Comment: 28 pages(TeX) and 11 figures (PS
Dynamical properties of liquid Al near melting. An orbital-free molecular dynamics study
The static and dynamic structure of liquid Al is studied using the orbital
free ab-initio molecular dynamics method. Two thermodynamic states along the
coexistence line are considered, namely T = 943 K and 1323 K for which X-ray
and neutron scattering data are available. A new kinetic energy functional,
which fulfills a number of physically relevant conditions is employed, along
with a local first principles pseudopotential. In addition to a comparison with
experiment, we also compare our ab-initio results with those obtained from
conventional molecular dynamics simulations using effective interionic pair
potentials derived from second order pseudopotential perturbation theory.Comment: 15 pages, 12 figures, 2 tables, submitted to PR
Sequential phosphorylation of SLP-76 at tyrosine 173 is required for activation of T and mast cells.
Cooperatively assembled signalling complexes, nucleated by adaptor proteins, integrate information from surface receptors to determine cellular outcomes. In T and mast cells, antigen receptor signalling is nucleated by three adaptors: SLP-76, Gads and LAT. Three well-characterized SLP-76 tyrosine phosphorylation sites recruit key components, including a Tec-family tyrosine kinase, Itk. We identified a fourth, evolutionarily conserved SLP-76 phosphorylation site, Y173, which was phosphorylated upon T-cell receptor stimulation in primary murine and Jurkat T cells. Y173 was required for antigen receptor-induced phosphorylation of phospholipase C-γ1 (PLC-γ1) in both T and mast cells, and for consequent downstream events, including activation of the IL-2 promoter in T cells, and degranulation and IL-6 production in mast cells. In intact cells, Y173 phosphorylation depended on three, ZAP-70-targeted tyrosines at the N-terminus of SLP-76 that recruit and activate Itk, a kinase that selectively phosphorylated Y173 in vitro. These data suggest a sequential mechanism whereby ZAP-70-dependent priming of SLP-76 at three N-terminal sites triggers reciprocal regulatory interactions between Itk and SLP-76, which are ultimately required to couple active Itk to its substrate, PLC-γ1
Evidence of short time dynamical correlations in simple liquids
We report a molecular dynamics (MD) study of the collective dynamics of a
simple monatomic liquid -interacting through a two body potential that mimics
that of lithium- across the liquid-glass transition. In the glassy phase we
find evidences of a fast relaxation process similar to that recently found in
Lennard-Jones glasses. The origin of this process is ascribed to the
topological disorder, i.e. to the dephasing of the different momentum
Fourier components of the actual normal modes of vibration of the disordered
structure. More important, we find that the fast relaxation persists in the
liquid phase with almost no temperature dependence of its characteristic
parameters (strength and relaxation time). We conclude, therefore, that in the
liquid phase well above the melting point, at variance with the usual
assumption of {\it un-correlated} binary collisions, the short time particles
motion is strongly {\it correlated} and can be described via a normal mode
expansion of the atomic dynamics.Comment: 7 pages, 7 .eps figs. To appear in Phys. Rev.
Inelastic X-ray scattering study of the collective dynamics in liquid sodium
Inelastic X-ray scattering data have been collected for liquid sodium at
T=390 K, i.e. slightly above the melting point. Owing to the very high
instrumental resolution, pushed up to 1.5 meV, it has been possible to
determine accurately the dynamic structure factor, , in a wide
wavevector range, nm, and to investigate on the dynamical
processes underlying the collective dynamics. A detailed analysis of the
lineshape of , similarly to other liquid metals, reveals the
co-existence of two different relaxation processes with slow and fast
characteristic timescales respectively. The present data lead to the conclusion
that: i) the picture of the relaxation mechanism based on a simple viscoelastic
model fails; ii) although the comparison with other liquid metals reveals
similar behavior, the data do not exhibit an exact scaling law as the principle
of corresponding state would predict.Comment: RevTex, 7 pages, 6 eps figures. Accepted by Phys. Rev.
- …