386 research outputs found
Species abundance information improves sequence taxonomy classification accuracy.
Popular naive Bayes taxonomic classifiers for amplicon sequences assume that all species in the reference database are equally likely to be observed. We demonstrate that classification accuracy degrades linearly with the degree to which that assumption is violated, and in practice it is always violated. By incorporating environment-specific taxonomic abundance information, we demonstrate a significant increase in the species-level classification accuracy across common sample types. At the species level, overall average error rates decline from 25% to 14%, which is favourably comparable to the error rates that existing classifiers achieve at the genus level (16%). Our findings indicate that for most practical purposes, the assumption that reference species are equally likely to be observed is untenable. q2-clawback provides a straightforward alternative for samples from common environments
Studying the impact of ocean eddies on the ecosystem of the Prince Edward Islands: DEIMEC ll
The Dynamics of Eddy Impacts on Marion’s Ecosystem Study (DEIMEC) programme was begun in 2002 with the aim of understanding the importance of the oceanic, upstream environment to the ecosystem of the Prince Edward Islands. This island group consists of two small volcanic islands and provides many opportunities for studying ecological and evolutionary processes, for monitoring ecological changes in relation to global climate change and for conserving a unique component of the planet’s biological diversity
Distilling Common History and Practice Elements to Inform Dissemination: Hanf-Model BPT Programs as an Example
There is a shift in evidence-based practice toward an understanding of the treatment elements that characterize empirically-supported interventions in general and the core components of specific approaches in particular. The evidence-base for Behavioral Parent Training (BPT), the standard of care for early-onset disruptive behavior disorders (Oppositional Defiant Disorder and Conduct Disorder), which frequently co-occur with Attention Deficit Hyperactivity Disorder, is well-established; yet, an ahistorical, program-specific lens tells little regarding how leaders, including Constance Hanf at the University of Oregon, shaped the common practice elements of contemporary evidence-based BPT. Accordingly, this review summarizes the formative work of Hanf, as well as the core elements, evolution, and extensions of her work, represented in Community Parent Education (COPE; Cunningham, Bremner, & Boyle, 1995; Cunningham, Bremner, Secord, & Harrison, 2009), Defiant Children (DC; Barkley 1987; Barkley, 2013), Helping the Noncompliant Child (HNC; Forehand & McMahon, 1981; McMahon & Forehand, 2003), Parent-Child Interaction Therapy (PCIT; Eyberg, & Robinson, 1982; Eyberg, 1988; Eyberg & Funderburk, 2011), and the Incredible Years (IY; Webster-Stratton, 1981; 1982; 2008). Our goal is not to provide an exhaustive review of the evidence-base for the Hanf-Model programs; rather, our intention is to provide a template of sorts from which agencies and clinicians can make informed choices about how and why they are using one program versus another, as well as how to make inform flexible use one program or combination of practice elements across programs, to best meet the needs of child clients and their families. Clinical implications and directions for future work are discussed
Ultrasound-induced acoustophoretic motion of microparticles in three dimensions
We derive analytical expressions for the three-dimensional (3D)
acoustophoretic motion of spherical microparticles in rectangular
microchannels. The motion is generated by the acoustic radiation force and the
acoustic streaming-induced drag force. In contrast to the classical theory of
Rayleigh streaming in shallow, infinite, parallel-plate channels, our theory
does include the effect of the microchannel side walls. The resulting
predictions agree well with numerics and experimental measurements of the
acoustophoretic motion of polystyrene spheres with nominal diameters of 0.537
um and 5.33 um. The 3D particle motion was recorded using astigmatism particle
tracking velocimetry under controlled thermal and acoustic conditions in a
long, straight, rectangular microchannel actuated in one of its transverse
standing ultrasound-wave resonance modes with one or two half-wavelengths. The
acoustic energy density is calibrated in situ based on measurements of the
radiation dominated motion of large 5-um-diam particles, allowing for
quantitative comparison between theoretical predictions and measurements of the
streaming induced motion of small 0.5-um-diam particles.Comment: 13 pages, 8 figures, Revtex 4.
Axial Load Capacity of Sheeted C and Z Members
An equation is developed for calculating the axial load capacity of C and Z shaped members used in roof or wall systems. The equations were determined to be valid for through fastened metal decking but not standing seam roof decking
Physical and biological coupling in eddies in the lee of the South-West Indian Ridge
Eddies have some decisive functions in the dynamics of the Southern Ocean ecosystems. This is particularly true in the Indian sector of the Southern Ocean, where a region of unusually high-mesoscale variability has been observed in the vicinity of the South-West Indian Ridge. In April 2003, three eddies were studied: eddy A, a recently spawned anticyclone south of the Antarctic Polar Front (APF),; eddy B, an anticyclone north of lying between the Subantarctic Front and the APF; and eddy C, a cyclone north of the APF west of the ridge. Elevated concentrations of total Chl-a coincided with the edges of the cyclonic eddy, whereas both anticyclonic eddies A and B were characterised by low total Chl-a concentrations. Biologically, the two anticyclonic eddies A and B were distinctly different in their biogeographic origin. The zooplankton community in the larger anticyclonic eddy A was similar in composition to the Antarctic Polar Frontal Zone (APFZ) community with an addition of some Antarctic species suggesting an origin just north of the APF. In contrast, the species composition within the second anticyclonic eddy B appeared to be more typical of the transitional nature of the APFZ, comprising species of both subantarctic and subtropical origin and thus influenced by intrusions of water masses from both north and south of the Subantarctic Front. Back-tracking of these features shows that the biological composition clearly demarcates the hydrographic origin of these features
Size-dependent particle migration and trapping in 3D microbubble streaming flows
Acoustically actuated sessile bubbles can be used as a tool to manipulate
microparticles, vesicles and cells. In this work, using acoustically actuated
sessile semi-cylindrical microbubbles, we demonstrate experimentally that
finite-sized microparticles undergo size-sensitive migration and trapping
towards specific spatial positions in three dimensions with high
reproducibility. The particle trajectories are successfully reproduced by
passive advection of the particles in a steady three-dimensional streaming flow
field augmented with volume exclusion from the confining boundaries. For
different particle sizes, this volume exclusion mechanism leads to three
regimes of qualitatively different migratory behavior, suggesting applications
for separating, trapping, and sorting of particles in three dimensions.Comment: 12 pages, 7 figure
Species abundance information improves sequence taxonomy classification accuracy
Popular naive Bayes taxonomic classifiers for amplicon sequences assume that all species in the reference database are equally likely to be observed. We demonstrate that classification accuracy degrades linearly with the degree to which that assumption is violated, and in practice it is always violated. By incorporating environment-specific taxonomic abundance information, we demonstrate a significant increase in the species-level classification accuracy across common sample types. At the species level, overall average error rates decline from 25% to 14%, which is favourably comparable to the error rates that existing classifiers achieve at the genus level (16%). Our findings indicate that for most practical purposes, the assumption that reference species are equally likely to be observed is untenable. q2-clawback provides a straightforward alternative for samples from common environments.QIIME 2 development was primarily funded by NSF Awards 1565100 to J.G.C. and
1565057 to R.K. This work was supported by an NHMRC project grant APP1085372,
awarded to G.A.H., J.G.C., and R.K
- …