11,433 research outputs found

    Quantum transport in carbon nanotubes

    Get PDF
    Carbon nanotubes are a versatile material in which many aspects of condensed matter physics come together. Recent discoveries, enabled by sophisticated fabrication, have uncovered new phenomena that completely change our understanding of transport in these devices, especially the role of the spin and valley degrees of freedom. This review describes the modern understanding of transport through nanotube devices. Unlike conventional semiconductors, electrons in nanotubes have two angular momentum quantum numbers, arising from spin and from valley freedom. We focus on the interplay between the two. In single quantum dots defined in short lengths of nanotube, the energy levels associated with each degree of freedom, and the spin-orbit coupling between them, are revealed by Coulomb blockade spectroscopy. In double quantum dots, the combination of quantum numbers modifies the selection rules of Pauli blockade. This can be exploited to read out spin and valley qubits, and to measure the decay of these states through coupling to nuclear spins and phonons. A second unique property of carbon nanotubes is that the combination of valley freedom and electron-electron interactions in one dimension strongly modifies their transport behaviour. Interaction between electrons inside and outside a quantum dot is manifested in SU(4) Kondo behavior and level renormalization. Interaction within a dot leads to Wigner molecules and more complex correlated states. This review takes an experimental perspective informed by recent advances in theory. As well as the well-understood overall picture, we also state clearly open questions for the field. These advances position nanotubes as a leading system for the study of spin and valley physics in one dimension where electronic disorder and hyperfine interaction can both be reduced to a very low level.Comment: In press at Reviews of Modern Physics. 68 pages, 55 figure

    Novel Methods for Determining Effective Interactions for the Nuclear Shell Model

    Full text link
    The Contractor Renormalization (CORE) method is applied in combination with modern effective-theory techniques to the nuclear many-body problem. A one-dimensional--yet ``realistic''--nucleon-nucleon potential is introduced to test these novel ideas. It is found that the magnitude of ``model-space'' (CORE) corrections diminishes considerably when an effective potential that eliminates the hard-momentum components of the potential is first introduced. As a result, accurate predictions for the ground-state energy of the there-body system are made with relatively little computational effort when both techniques are used in a complementary fashion.Comment: 14 pages, 5 figures and 2 tabl

    Combining PPB and marker-assisted selection: strategies and experiences with rice

    Get PDF
    Participatory plant breeding should not preclude the use of modern biotechnological techniques

    Symphonic Winds Symphonic Band

    Get PDF
    Bone Student Center Ballroom Sunday Afternoon October 3, 1999 3:00 p.m

    Symphonic Winds

    Get PDF
    Braden Auditorium Sunday Evening April 26, 1992 8:00p.m

    Symphonic Winds and the Symphonic Band

    Get PDF
    Bone Student Center Ballroom Thursday Evening October 1, 1998 8:00p.m

    Symphonic Band

    Get PDF
    Braden Auditorium Sunday Afternoon October 17, 1993 3:00p.m

    Symphonic Winds & Wind Symphony

    Get PDF
    Bone Student Center Ballroom Friday Evening April 28, 2000 8:00 p.m
    corecore