12,653 research outputs found
Semidirect product of CCR and CAR algebras and asymptotic states in quantum electrodynamics
A C*-algebra containing the CCR and CAR algebras as its subalgebras and
naturally described as the semidirect product of these algebras is discussed. A
particular example of this structure is considered as a model for the algebra
of asymptotic fields in quantum electrodynamics, in which Gauss' law is
respected. The appearence in this algebra of a phase variable related to
electromagnetic potential leads to the universal charge quantization.
Translationally covariant representations of this algebra with energy-momentum
spectrum in the future lightcone are investigated. It is shown that vacuum
representations are necessarily nonregular with respect to total
electromagnetic field. However, a class of translationally covariant,
irreducible representations is constructed excplicitly, which remain as close
as possible to the vacuum, but are regular at the same time. The spectrum of
energy-momentum fills the whole future lightcone, but there are no vectors with
energy-momentum lying on a mass hyperboloid or in the origin.Comment: 42 pages, LaTeX; minor corrections, a reference adde
A probabilistic and information theoretic interpretation of quantum evolutions
In quantum mechanics, outcomes of measurements on a state have a
probabilistic interpretation while the evolution of the state is treated
deterministically. Here we show that one can also treat the evolution as being
probabilistic in nature and one can measure `which unitary' happened. Likewise,
one can give an information-theoretic interpretation to evolutions by defining
the entropy of a completely positive map. This entropy gives the rate at which
the informational content of the evolution can be compressed. One cannot
compress this information and still have the evolution act on an unknown state,
but we demonstrate a general scheme to do so probabilistically. This allows one
to generalize super-dense coding to the sending of quantum information. One can
also define the ``interaction-entanglement'' of a unitary, and concentrate this
entanglement.Comment: 9 page
Particle production in p-p collisions at sqrt(s) = 17 GeV within the statistical model
A thermal-model analysis of particle production of p-p collisions at sqrt(s)
= 17 GeV using the latest available data is presented. The sensitivity of model
parameters on data selections and model assumptions is studied. The system-size
dependence of thermal parameters and recent differences in the statistical
model analysis of p-p collisions at the super proton synchrotron (SPS) are
discussed. It is shown that the temperature and strangeness undersaturation
factor depend strongly on kaon yields which at present are still not well known
experimentally. It is conclude, that within the presently available data at the
SPS it is rather unlikely that the temperature in p-p collisions exceeds
significantly that expected in central collisions of heavy ions at the same
energy.Comment: 6 pages, 3 figures, submitted to Phys. Rev.
Non-Bilocal Measurement via Entangled State
Two observers, who share a pair of particles in an entangled mixed state, can
use it to perform some non-bilocal measurement over another bipartite system.
In particular, one can construct a specific game played by the observers
against a coordinator, in which they can score better than a pair of observers
who only share a classical communication channel.Comment: 6 pages. minor change
Characterization of distillability of entanglement in terms of positive maps
A necessary and sufficient condition for 1-distillability is formulated in
terms of decomposable positive maps. As an application we provide insight into
why all states violating the reduction criterion map are distillable and
demonstrate how to construct such maps in a systematic way. We establish a
connection between a number of existing results, which leads to an elementary
proof for the characterisation of distillability in terms of 2-positive maps.Comment: 4 pages, revtex4. Published revised version, title changed, expanded
discussion, main result unchange
Statistical Model Predictions for p+p and Pb+Pb Collisions at LHC
Particle production in p+p and central Pb+Pb collisions at LHC is discussed
in the context of the statistical thermal model. For heavy-ion collisions,
predictions of various particle ratios are presented. The sensitivity of
several ratios on the temperature and the baryon chemical potential is studied
in detail, and some of them, which are particularly appropriate to determine
the chemical freeze-out point experimentally, are indicated. Considering
elementary interactions on the other hand, we focus on strangeness production
and its possible suppression. Extrapolating the thermal parameters to LHC
energy, we present predictions of the statistical model for particle yields in
p+p collisions. We quantify the strangeness suppression by the correlation
volume parameter and discuss its influence on particle production. We propose
observables that can provide deeper insight into the mechanism of strangeness
production and suppression at LHC.Comment: 7 pages, 5 figures, conference contribution to "International school
of nuclear physics", Erice, Sicily, 16 - 24 September 2008; Progress in
Particle and Nuclear Physics, 2009, in pres
Quantum Operation Time Reversal
The dynamics of an open quantum system can be described by a quantum
operation, a linear, complete positive map of operators. Here, I exhibit a
compact expression for the time reversal of a quantum operation, which is
closely analogous to the time reversal of a classical Markov transition matrix.
Since open quantum dynamics are stochastic, and not, in general, deterministic,
the time reversal is not, in general, an inversion of the dynamics. Rather, the
system relaxes towards equilibrium in both the forward and reverse time
directions. The probability of a quantum trajectory and the conjugate, time
reversed trajectory are related by the heat exchanged with the environment.Comment: 4 page
Statistical Model Predictions for Pb-Pb Collisions at LHC
The systematics of Statistical Model parameters extracted from heavy-ion
collisions at lower energies are exploited to extrapolate in the LHC regime.
Predictions of various particle ratios are presented and particle production in
central Pb-Pb collisions at LHC is discussed in the context of the Statistical
Model. The sensitivity of several ratios on the temperature and the baryon
chemical potential is studied in detail, and some of them, which are
particularly appropriate to determine the chemical freeze-out point
experimentally, are indicated. The impact of feed-down contributions from
resonances, especially to light hadrons, is illustrated.Comment: 5 pages, 2 figures, 1 table, SQM 2006 conference proceedings,
accepted for publication in J. Phys.
Identifying hybridizing taxa within the Daphnia longispina species complex: a comparison of genetic methods and phenotypic approaches
Daphnia galeata Sars, D. longispina O. F. Muller and D. cucullata Sars (Crustacea: Cladocera) are closely related species which often produce interspecific hybrids in natural populations. Several marker systems are available for taxon determination in this hybridizing complex, but their performance and reliability has not been systematically assessed. We compared results from identifications by three molecular methods. More than 1,200 individuals from 10 localities in the Czech Republic were identified as parental species or hybrids by allozyme electrophoresis and the analysis of the restriction fragment length polymorphism of the internal transcribed spacer (ITS-RFLP); over 440 of them were additionally analyzed and identified by 12 microsatellite loci. Identification by microsatellite markers corresponded well with allozyme analyses. However, consistent discrepancies between ITS-RFLP and other markers were observed in two out of 10 studied localities. Although some marker discrepancies may have been caused by occasional recent introgression, consistent deviations between ITS-RFLP and other markers suggest a long-term maintenance of introgressed alleles. These results warn against its use as a sole identification method in field studies. Additionally, we quantitatively evaluated the discriminatory power of geometric morphometric (elliptic Fourier) analysis of body shapes based on photos of over 1,300 individuals pre-classified by allozyme markers. Furthermore, a randomly selected subset of 240 individuals was independently determined from photos by several experts. Despite a tendency for morphological divergence among parental Daphnia species, some taxa (especially D. galeata, D. longispina, and their hybrids) substantially overlapped in their body shapes. This was reflected in different determination success for particular species and hybrids in discriminant analysis based on shape data as well as from photograph
- …