284 research outputs found
Primary rat sertoli and interstitial cells exhibit a differential response to cadmium
Two cell types central to the support of spermatogenesis, the Sertoli cell and the interstitial (Leydig) cell, were isolated from the same cohort of young male rats and challenged with cadmium chloride to compare their susceptibility to the metal. Both cell types were cultured under similar conditions, and similar biochemical endpoints were chosen to minimize experimental variability. These endpoints include the uptake of 109 Cd, reduction of the vital tetrazolium dye MTT, incorporation of 3 H-leucine, change in heat-stable cadmium binding capacity, and production of lactate. Using these parameters, it was observed that the Sertoli cell cultures were adversely affected in a dose-and time-dependent manner, while the interstitial cell cultures, treated with identical concentrations of CdCl 2 , were less affected. The 72-hr LC 50 's for Sertoli cells and interstitial cells were 4.1 and 19.6 μM CdCl 2 , respectively. Thus, different cell populations within the same tissue may differ markedly in susceptibility to a toxicant. These in vitro data suggest that the Sertoli cell, in relation to the interstitium, is particularly sensitive to cadmium. Because the Sertoli cell provides functional support for the seminiferous epithelium, the differential sensitivity of this cell type may, in part, explain cadmium-induced testicular dysfunction, particularly at doses that leave the vascular epithelium intact.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42554/1/10565_2004_Article_BF00135027.pd
Role of RELAP/SCDAPSIM in Nuclear Safety
The RELAP/SCDAPSIM code, designed to predict the behaviour of reactor systems during normal and accident conditions, is being developed as part of the international SCDAP Development and Training Program (SDTP). SDTP consists of nearly 60 organizations in 28 countries supporting the development of technology, software, and training materials for the nuclear industry. The program members and licensed software users include universities, research organizations, regulatory organizations, vendors, and utilities located in Europe, Asia, Latin America, and the United States. Innovative Systems Software (ISS) is the administrator for the program. RELAP/SCDAPSIM is used by program members and licensed users to support a variety of activities. The paper provides a brief review of some of the more important activities including the analysis of research reactors and Nuclear Power Plants, design and analysis of experiments, and training
Recommended from our members
Assessment of the reflood oxidation models in SCDAP/RELAP5/MOD3.1
Reflooding of a hot damaged core following the start of a severe accident can lead to significant increases in the heating, melting, and oxidation of the core prior to the termination of the accident. These effects have been observed in bundle heating and melting experiments terminated by the addition of water and are postulated to have had a major impact on the accident progression in the TMI-2 accident. Although the detailed mechanisms for the processes are not completely understood, new SCDAP/RELAP5/MOD3.1e models, describing the cracking /spalling of oxidized fuel rod cladding during reflood, and the resulting oxidation of the underlying Zircaloy and relocating liquefied U-Zr-O, provide a reasonable estimate of the experimentally-observed bundle temperatures, hydrogen production, and changes in bundle geometry. This paper provides a brief description of the new models, selected highlights from code-to-data comparisons, and selected results from a recent set of calculations fro TMI-2 using the new models. The potential impact of these new models on other plant calculations is discussed in the concluding portion of this paper
Recommended from our members
Interpretation of experimental results from the CORA core melt progression experiments
Data obtained from the CORA bundle heatup and melting experiments, performed at Kernforschungszentrum, Karlsruhe, Germany, are being analyzed at the Idaho National Engineering Laboratory. The analysis is being performed as part of a systematic review of core melt progression experiments for the United States Nuclear Regulatory Commission to (a) develop an improved understanding of important phenomena occurring during a severe accident, (b) to validate existing severe accident models, and (c) where necessary, develop improved models. An assessment of the variations in damage progression behavior because of variations in test parameters (a) bundle design and size, (b) system pressure, (c) slow cooling of the damaged bundles in argon versus rapid quenching in water, and (d) bundle inlet temperatures and flow rates is provided in the paper. The influence of uncertainties in important test conditions is also discussed. Specific results presented include (a) bundle temperature, (b) the onset and movement of the oxidation front within the bundle, (c) fuel rod ballooning and rod failure, and (d) melt relocation and associated material interactions between bundle components and structures. 12 refs., 16 figs., 2 tabs
Recommended from our members
Analysis of the OECD-LOFT International Standard Problem 31 using SCDAP/RELAP5/MOD3
The CORA-13 bundle heating and melting experiment performed at the Kernforechungszentrum, Karlaruhe, (KfK) was analyzed at the Idaho National Engineering Laboratory (INEL) using SCDAP/RELAP5/MOD3. This analysis was part of a systematic assessment of SCDAP/RELAP5/MOD3 for the US Nuclear Regulatory Commission to (a) evaluate the variances between calculated and observed behavior, (b) identify outstanding modeling deficiencies, and (c) to evaluate the impact of ongoing modeling improvements. A brief discussion of the CORA-13 experiment including a description of the facility, important test conditions, and comparisons with other CORA experimental conditions and results is provided in this report. This report describes the results of the SCDAP/RELAPS/MOD3 analysis including a description of the SCDAP/RELAPS model of the facility, base case results, sensitivity results, and a comparison with other SCDAP/RELAP5/MOD3 code-to-data comparisons
Recommended from our members
SCDAP/RELAP5/MOD 3.1 Code Manual: Developmental assessment. Volume 5
The SCDAP/RELAP5 code has been developed for best estimate transient simulation of Light Water Reactor coolant systems during a severe accident. The code models the coupled behavior of the reactor coolant system, the core, fission product released during a severe accident transient as well as large and small break loss of coolant accidents, operational transients such as anticipated transient without SCRAM, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling approach is used that permits as much of a particular system to be modeled as necessary. Control system and secondary system components are included to permit modeling of plant controls, turbines, condensers, and secondary feedwater conditioning systems. This volume contains detailed code-to-data calculations performed using SCDAP/RELAP5/MOD3.1, as well as comparison calculations performed with earlier code versions. Results of full plant calculations which include Surry, TMI-2, and Browns Ferry are described. Results of a nodalization study, which accounted for both axial and radial nodalization of the core, are also reported
Recommended from our members
TMI-2 analysis using SCDAP/RELAP5/MOD3.1
SCDAP/RELAP5/MOD3.1, an integrated thermal hydraulic analysis code developed primarily to simulate severe accidents in nuclear power plants, was used to predict the progression of core damage during the TMI-2 accident. The version of the code used for the TMI-2 analysis described in this paper includes models to predict core heatup, core geometry changes, and the relocation of molten core debris to the lower plenum of the reactor vessel. This paper describes the TMI-2 input model, initial conditions, boundary conditions, and the results from the best-estimate simulation of Phases 1 to 4 of the TMI-2 accident as well as the results from several sensitivity calculations
Benchmark study on fuel bundle degradation in the phebus FPT2 test using state-of-the-art severe accident analysis codes
This paper presents the results of posttest calculations of thephebus FPT2 experiment. While the exercise concentrates mainly on code-to-code benchmarking, a comparison is also made with selected experimental results. The test scenario with the appropriate initial and boundary conditions was provided by the Institut de Radioprotection et de SÛreté Nucléaire. For the analyses, seven severe accident analysis codes were used: ASTEC, ATHLET-CD, MELCOR, ICARE2, ICARE/CATHARE, SCDAP/RELAP5, and RELAP/SCDAPSIM. The calculations focused on the following phenomena occurring in the FPT2 bundle: thermal behavior; hydrogen production, mainly due to cladding oxidation; severe degradation of irradiated fuel; and the release of fission products, control rod, and structure materials. Using the same postdefined boundary and initial conditions, the code-data differences are typically within 10% for most parameters, and not more than 25%. More importantly, the codes were able to capture the major features of the transient evolution. Given that Phebus FPT2 exhibited almost all of the major low-pressure severe accident phenomena except for core cooling by water injection and late-phase core melt behavior in the lower head, the results engender a degree of confidence in the code predictive capability for sequences similar toFPT2
- …