6,625 research outputs found
Recommended from our members
Large-scale changes in cortical dynamics triggered by repetitive somatosensory electrical stimulation.
BackgroundRepetitive somatosensory electrical stimulation (SES) of forelimb peripheral nerves is a promising therapy; studies have shown that SES can improve motor function in stroke subjects with chronic deficits. However, little is known about how SES can directly modulate neural dynamics. Past studies using SES have primarily used noninvasive methods in human subjects. Here we used electrophysiological recordings from the rodent primary motor cortex (M1) to assess how SES affects neural dynamics at the level of single neurons as well as at the level of mesoscale dynamics.MethodsWe performed acute extracellular recordings in 7 intact adult Long Evans rats under ketamine-xylazine anesthesia while they received transcutaneous SES. We recorded single unit spiking and local field potentials (LFP) in the M1 contralateral to the stimulated arm. We then compared neural firing rate, spike-field coherence (SFC), and power spectral density (PSD) before and after stimulation.ResultsFollowing SES, the firing rate of a majority of neurons changed significantly from their respective baseline values. There was, however, a diversity of responses; some neurons increased while others decreased their firing rates. Interestingly, SFC, a measure of how a neuron's firing is coupled to mesoscale oscillatory dynamics, increased specifically in the δ-band, also known as the low frequency band (0.3- 4 Hz). This increase appeared to be driven by a change in the phase-locking of broad-spiking, putative pyramidal neurons. These changes in the low frequency range occurred without a significant change in the overall PSD.ConclusionsRepetitive SES significantly and persistently altered the local cortical dynamics of M1 neurons, changing both firing rates as well as the SFC magnitude in the δ-band. Thus, SES altered the neural firing and coupling to ongoing mesoscale dynamics. Our study provides evidence that SES can directly modulate cortical dynamics
The Advantage of Increased Resolution in the Study of Quasar Absorption Systems
We compare a new R = 120,000 spectrum of PG1634+706 (z_QSO = 1.337,m_V =
14.9) obtained with the HDS instrument on Subaru to a R = 45, 000 spectrum
obtained previously with HIRES/Keck. In the strong MgII system at z = 0.9902
and the multiple cloud, weak MgII system at z = 1.0414, we find that at the
higher resolution, additional components are resolved in a blended profile. We
find that two single-cloud weak MgII absorbers were already resolved at R =
45,000, to have b = 2 - 4 km/s. The narrowest line that we measure in the R =
120, 000 spectrum is a component of the Galactic NaI absorption, with b =
0.90+/-0.20 km/s. We discuss expectations of similarly narrow lines in various
applications, including studies of DLAs, the MgI phases of strong MgII
absorbers, and high velocity clouds. By applying Voigt profile fitting to
synthetic lines, we compare the consistency with which line profile parameters
can be accurately recovered at R = 45,000 and R = 120,000. We estimate the
improvement gained from superhigh resolution in resolving narrowly separated
velocity components in absorption profiles. We also explore the influence of
isotope line shifts and hyperfine splitting in measurements of line profile
parameters, and the spectral resolution needed to identify these effects. Super
high resolution spectra of quasars, which will be routinely possible with
20-meter class telescopes, will lead to greater sensitivity for absorption line
surveys, and to determination of more accurate physical conditions for cold
phases of gas in various environments.Comment: To appear in AJ. Paper with better resolution images available at
http://www.astro.psu.edu/users/anand/superhigh.AJ.pd
Self Interacting Dark Matter in the Solar System
Weakly coupled, almost massless, spin 0 particles have been predicted by many
extensions of the standard model of particle physics. Recently, the PVLAS group
observed a rotation of polarization of electromagnetic waves in vacuum in the
presence of transverse magnetic field. This phenomenon is best explained by the
existence of a weakly coupled light pseudoscalar particle. However, the
coupling required by this experiment is much larger than the conventional
astrophysical limits. Here we consider a hypothetical self-interacting
pseudoscalar particle which couples weakly with visible matter.
Assuming that these pseudoscalars pervade the galaxy, we show that the solar
limits on the pseudoscalar-photon coupling can be evaded.Comment: 17 pages, 2 figure
Shape-invariant quantum Hamiltonian with position-dependent effective mass through second order supersymmetry
Second order supersymmetric approach is taken to the system describing motion
of a quantum particle in a potential endowed with position-dependent effective
mass. It is shown that the intertwining relations between second order partner
Hamiltonians may be exploited to obtain a simple shape-invariant condition.
Indeed a novel relation between potential and mass functions is derived, which
leads to a class of exactly solvable model. As an illustration of our
procedure, two examples are given for which one obtains whole spectra
algebraically. Both shape-invariant potentials exhibit harmonic-oscillator-like
or singular-oscillator-like spectra depending on the values of the
shape-invariant parameter.Comment: 16 pages, 5 figs; Present e-mail of AG: [email protected]
Photon & Axion Oscillation In a Magnetized Medium: A Covariant Treatment
Pseudoscalar particles, with almost zero mass and very weak coupling to the
visible matter, arise in many extensions of the standard model of particle
physics. Their mixing with photons in the presence of an external magnetic
field leads to many interesting astrophysical and cosmological consequences.
This mixing depends on the medium properties, the momentum of the photon and
the background magnetic field. Here we give a general treatment of
pseudoscalar-photon oscillations in a background magnetic field, taking the
Faraday term into account. We give predictions valid in all regimes, under the
assumption that the frequency of the wave is much higher than the plasma
frequency of the medium. At sufficiently high frequencies, the Faraday effect
is negligible and we reproduce the standard pseudoscalar-photon mixing
phenomenon. However at low frequencies, where Faraday effect is important, the
mixing formulae are considerably modified. We explicitly compute the
contribution due to the longitudinal mode of the photon and show that it is
negligible.Comment: 16 pages, no figure
Nonsingular potentials from excited state factorization of a quantum system with position dependent mass
The modified factorization technique of a quantum system characterized by
position-dependent mass Hamiltonian is presented. It has been shown that the
singular superpotential defined in terms of a mass function and a excited state
wave function of a given position-dependent mass Hamiltonian can be used to
construct non-singular isospectral Hamiltonians. The method has been
illustrated with the help of a few examples.Comment: Improved version accepted in J. Phys.
Can be gravitational waves markers for an extra-dimension?
The main issue of the present letter is to fix specific features (which turn
out being independent of extradimension size) of gravitational waves generated
before a dimensional compactification process. Valuable is the possibility to
detect our prediction from gravitational wave experiment without high energy
laboratory investigation. In particular we show how gravitational waves can
bring information on the number of Universe dimensions. Within the framework of
Kaluza-Klein hypotheses, a different morphology arises between waves generated
before than the compactification process settled down and ordinary
4-dimensional waves. In the former case the scalar and tensor degrees of
freedom can not be resolved. As a consequence if were detected gravitational
waves having the feature here predicted (anomalous polarization amplitudes),
then they would be reliable markers for the existence of an extra dimension.Comment: 5 pages, two figure, to appear on Int. Journ. Mod. Phys.
Absorption of Electro-magnetic Waves in a Magnetized Medium
In continuation to our earlier work, in which the structure of the vacuum
polarisation tensor in a medium was analysed in presence of a background
electro-magnetic field, we discuss the absorptive part of the vacuum
polarization tensor. Using the real time formalism of finite temperature field
theory we calculate the absorptive part of 1-loop vacuum polarisation tensor in
the weak field limit (). Estimates of the absorption probability are
also made for different physical conditions of the background medium.Comment: 9 Pages. One figure. LaTe
Design of a ferrite rod antenna for harvesting energy from medium wave broadcast signals
Radio frequency (RF) energy harvesting is an emerging technology that has the potential to eliminate the need for batteries and reduce maintenance costs of sensing applications. The antenna is one of the critical components that determines its performance and while antenna design has been well researched for the purpose of communication, the design for RF energy harvesting applications has not been widely addressed. The authors present an optimised design for such an antenna for harvesting energy from medium wave broadcast transmissions. They derive and use a model for computing the optimal antenna configuration given application requirements on output voltage and power, material costs and physical dimensions. Design requirements for powering autonomous smart meters have been considered. The proposed approach was used to obtain the antenna configuration that is able to deliver 1 mW of power to 1 kΩ load at a distance of up to 9 km, sufficient to replace batteries on low-power sensing applications. Measurements using a prototype device have been used to verify the authors simulations
A Modified Johnson-Cook Model Incorporating the Effect of Grain Size on Flow Stress
The mechanical properties of steel are influenced by grain size, which can change through mechanisms such as nucleation and growth at elevated temperatures. However, the classic Johnson-Cook model that is widely used in hot deformation simulations does not consider the effect of grain size on flow stress. In this study, the Johnson-Cook model was modified to incorporate the effects of austenite grain size on flow stress. A finite element model was employed to characterize the effects of grain size on the flow stress for different steel grades over a range of temperatures (900⁰ to 1300⁰). Simulation results show good agreement with experimental observations
- …