6,625 research outputs found

    The Advantage of Increased Resolution in the Study of Quasar Absorption Systems

    Get PDF
    We compare a new R = 120,000 spectrum of PG1634+706 (z_QSO = 1.337,m_V = 14.9) obtained with the HDS instrument on Subaru to a R = 45, 000 spectrum obtained previously with HIRES/Keck. In the strong MgII system at z = 0.9902 and the multiple cloud, weak MgII system at z = 1.0414, we find that at the higher resolution, additional components are resolved in a blended profile. We find that two single-cloud weak MgII absorbers were already resolved at R = 45,000, to have b = 2 - 4 km/s. The narrowest line that we measure in the R = 120, 000 spectrum is a component of the Galactic NaI absorption, with b = 0.90+/-0.20 km/s. We discuss expectations of similarly narrow lines in various applications, including studies of DLAs, the MgI phases of strong MgII absorbers, and high velocity clouds. By applying Voigt profile fitting to synthetic lines, we compare the consistency with which line profile parameters can be accurately recovered at R = 45,000 and R = 120,000. We estimate the improvement gained from superhigh resolution in resolving narrowly separated velocity components in absorption profiles. We also explore the influence of isotope line shifts and hyperfine splitting in measurements of line profile parameters, and the spectral resolution needed to identify these effects. Super high resolution spectra of quasars, which will be routinely possible with 20-meter class telescopes, will lead to greater sensitivity for absorption line surveys, and to determination of more accurate physical conditions for cold phases of gas in various environments.Comment: To appear in AJ. Paper with better resolution images available at http://www.astro.psu.edu/users/anand/superhigh.AJ.pd

    Self Interacting Dark Matter in the Solar System

    Get PDF
    Weakly coupled, almost massless, spin 0 particles have been predicted by many extensions of the standard model of particle physics. Recently, the PVLAS group observed a rotation of polarization of electromagnetic waves in vacuum in the presence of transverse magnetic field. This phenomenon is best explained by the existence of a weakly coupled light pseudoscalar particle. However, the coupling required by this experiment is much larger than the conventional astrophysical limits. Here we consider a hypothetical self-interacting pseudoscalar particle which couples weakly with visible matter. Assuming that these pseudoscalars pervade the galaxy, we show that the solar limits on the pseudoscalar-photon coupling can be evaded.Comment: 17 pages, 2 figure

    Shape-invariant quantum Hamiltonian with position-dependent effective mass through second order supersymmetry

    Full text link
    Second order supersymmetric approach is taken to the system describing motion of a quantum particle in a potential endowed with position-dependent effective mass. It is shown that the intertwining relations between second order partner Hamiltonians may be exploited to obtain a simple shape-invariant condition. Indeed a novel relation between potential and mass functions is derived, which leads to a class of exactly solvable model. As an illustration of our procedure, two examples are given for which one obtains whole spectra algebraically. Both shape-invariant potentials exhibit harmonic-oscillator-like or singular-oscillator-like spectra depending on the values of the shape-invariant parameter.Comment: 16 pages, 5 figs; Present e-mail of AG: [email protected]

    Photon & Axion Oscillation In a Magnetized Medium: A Covariant Treatment

    Full text link
    Pseudoscalar particles, with almost zero mass and very weak coupling to the visible matter, arise in many extensions of the standard model of particle physics. Their mixing with photons in the presence of an external magnetic field leads to many interesting astrophysical and cosmological consequences. This mixing depends on the medium properties, the momentum of the photon and the background magnetic field. Here we give a general treatment of pseudoscalar-photon oscillations in a background magnetic field, taking the Faraday term into account. We give predictions valid in all regimes, under the assumption that the frequency of the wave is much higher than the plasma frequency of the medium. At sufficiently high frequencies, the Faraday effect is negligible and we reproduce the standard pseudoscalar-photon mixing phenomenon. However at low frequencies, where Faraday effect is important, the mixing formulae are considerably modified. We explicitly compute the contribution due to the longitudinal mode of the photon and show that it is negligible.Comment: 16 pages, no figure

    Nonsingular potentials from excited state factorization of a quantum system with position dependent mass

    Full text link
    The modified factorization technique of a quantum system characterized by position-dependent mass Hamiltonian is presented. It has been shown that the singular superpotential defined in terms of a mass function and a excited state wave function of a given position-dependent mass Hamiltonian can be used to construct non-singular isospectral Hamiltonians. The method has been illustrated with the help of a few examples.Comment: Improved version accepted in J. Phys.

    Can be gravitational waves markers for an extra-dimension?

    Full text link
    The main issue of the present letter is to fix specific features (which turn out being independent of extradimension size) of gravitational waves generated before a dimensional compactification process. Valuable is the possibility to detect our prediction from gravitational wave experiment without high energy laboratory investigation. In particular we show how gravitational waves can bring information on the number of Universe dimensions. Within the framework of Kaluza-Klein hypotheses, a different morphology arises between waves generated before than the compactification process settled down and ordinary 4-dimensional waves. In the former case the scalar and tensor degrees of freedom can not be resolved. As a consequence if were detected gravitational waves having the feature here predicted (anomalous polarization amplitudes), then they would be reliable markers for the existence of an extra dimension.Comment: 5 pages, two figure, to appear on Int. Journ. Mod. Phys.

    Absorption of Electro-magnetic Waves in a Magnetized Medium

    Full text link
    In continuation to our earlier work, in which the structure of the vacuum polarisation tensor in a medium was analysed in presence of a background electro-magnetic field, we discuss the absorptive part of the vacuum polarization tensor. Using the real time formalism of finite temperature field theory we calculate the absorptive part of 1-loop vacuum polarisation tensor in the weak field limit (eB<m2eB < m^2). Estimates of the absorption probability are also made for different physical conditions of the background medium.Comment: 9 Pages. One figure. LaTe

    Design of a ferrite rod antenna for harvesting energy from medium wave broadcast signals

    Get PDF
    Radio frequency (RF) energy harvesting is an emerging technology that has the potential to eliminate the need for batteries and reduce maintenance costs of sensing applications. The antenna is one of the critical components that determines its performance and while antenna design has been well researched for the purpose of communication, the design for RF energy harvesting applications has not been widely addressed. The authors present an optimised design for such an antenna for harvesting energy from medium wave broadcast transmissions. They derive and use a model for computing the optimal antenna configuration given application requirements on output voltage and power, material costs and physical dimensions. Design requirements for powering autonomous smart meters have been considered. The proposed approach was used to obtain the antenna configuration that is able to deliver 1 mW of power to 1 kΩ load at a distance of up to 9 km, sufficient to replace batteries on low-power sensing applications. Measurements using a prototype device have been used to verify the authors simulations

    A Modified Johnson-Cook Model Incorporating the Effect of Grain Size on Flow Stress

    Get PDF
    The mechanical properties of steel are influenced by grain size, which can change through mechanisms such as nucleation and growth at elevated temperatures. However, the classic Johnson-Cook model that is widely used in hot deformation simulations does not consider the effect of grain size on flow stress. In this study, the Johnson-Cook model was modified to incorporate the effects of austenite grain size on flow stress. A finite element model was employed to characterize the effects of grain size on the flow stress for different steel grades over a range of temperatures (900⁰ to 1300⁰). Simulation results show good agreement with experimental observations
    corecore