96 research outputs found

    Spin diffusion of the t-J model

    Full text link
    The spin-diffusion constant of the 2D tJt-J model is calculated for the first time using an analytical approach at high temperatures and a recently-developed numerical method based on the Lanczos technique combined with random sampling in the intermediate temperature regime. A simple relation, σ=Dsχ\sigma = D_s\chi, between spin conductivity and spin diffusion is established and used to calculate the latter. In the high-temperature and low-doping limit the calculated diffusion constant agrees with known results for the Heisenberg model. At small hole doping, DsD_s increases approximately linearly with doping, which leads us to an important conclusion that hopping processes enhance spin diffusion at high temperatures. At modest hole doping, δ0.25\delta\sim 0.25, diffusion exhibits a nonmonotonic temperature dependence, which indicates anomalous spin dynamics at small frequencies.Comment: 12 pages with figure

    Optical conductivity in doped manganites with planar x2^2-y2^2 orbital order

    Full text link
    We investigate a planar model for the ferromagnetic (FM) phase of manganites, which develops orbital order of ege_g electrons with x2^2-y2^2-symmetry at low temperature. The dynamic structure factor of orbital excitations and the optical conductivity σ(ω)\sigma(\omega) are studied with help of a finite-temperature diagonalization method. Our calculations provide a theoretical prediction for σ(ω)\sigma(\omega) for the 2D FM state and are of possible relevance for the recently found A-type phase of manganites at high doping which consists of FM layers coupled antiferromagnetically. In the x2^2-y2^2 ordered regime σ(ω)\sigma(\omega) shows both a Drude peak and a gapped incoherent absorption due to a gap in the orbital excitations.Comment: 5 pages, 5 figures, to appear in Phys. Rev. Let

    Low Temperature Lanczos Method

    Full text link
    We present a modified finite temperature Lanczos method for the evaluation of dynamical and static quantities of strongly correlated electron systems that complements the finite temperature method (FTLM) introduced by Jaklic and Prelovsek for low temperatures. Together they allow accurate calculations at any temperature with moderate effort. As an example we calculate the static spin correlation function and the regular part of the optical conductivity of the one dimensional Hubbard model at half-filling and show in detail the connection between the ground state and finite temperature method. By using Cluster Perturbation Theory (CPT), the finite temperature spectral function is extended to the infinite system, clearly exhibiting the effects of spin-charge separation.Comment: 4 pages, 4 figure

    Anomalous Spin Dynamics in Doped Quantum Antiferromagnets

    Full text link
    Finite-temperature spin dynamics in planar t-J model is studied using the method based on the Lanczos diagonalization of small systems. Dynamical spin structure factor at moderate dopings shows the coexistence of free-fermion-like and spin-fluctuation timescales. At T<J, the low-frequency and static susceptibility show pronounced T dependence, supporting a scenario, related to the marginal Fermi-liquid one, for the explanation of neutron-scattering and NMR-relaxation experiments in cuprates. Calculated NMR relaxation rates reasonably reproduce experimental ones.Comment: 10 pages + 4 figures, Postscript in uuencoded compressed tar file, IJS-TP-94/2

    From local to nonlocal Fermi liquid in doped antiferromagnets

    Full text link
    The variation of single-particle spectral functions with doping is studied numerically within the t-J model. It is shown that corresponding self energies change from local ones at the intermediate doping to strongly nonlocal ones for a weakly doped antiferromagnet. The nonlocality shows up most clearly in the pseudogap emerging in the density of states, due to the onset of short-range antiferromagnetic correlations.Comment: 4 pages, 3 Postscript figures, revtex, submitted to Phys.Rev.Let

    Evidence for ideal insulating/conducting state in a 1D integrable system

    Full text link
    Using numerical diagonalization techniques we analyze the finite temperature/frequency conductance of a one dimensional model of interacting spinless fermions. Depending on the interaction, the observed finite temperature charge stiffness and low frequency conductance indicate a fundamental difference between integrable and non-integrable cases. The integrable systems behave as ideal conductors in the metallic regime and as ideal insulators in the insulating one. The non-integrable systems are, as expected, generic conductors in the metallic regime and activated ones in the insulating regime.Comment: revtex file, followed by 5 uuencoded postscript figure

    Charge Dynamics in the Planar t-J Model

    Full text link
    The finite-temperature optical conductivity σ(ω)\sigma(\omega) in the planar tJt-J model is analysed using recently introduced numerical method based on the Lanczos diagonalization of small systems (up to 20 sites), as well as by analytical approaches, including the method of frequency moments and the retraceable-path approximation. Results for a dynamical mobility of a single hole at elevated temperatures T>tT>t reveal a Gaussian-like μ(ω)\mu(\omega) spectra, however with a nonanalytical behavior at low ω\omega. In the single hole response a difference between the ferromagnetic (J=0) and the antiferromagnetic (J>0J>0) polaron shows up at T<JT<J. At larger dopings numerical results in studied systems are consistent with the thermodynamical behavior for T>T0.1 tT>T^*\ge 0.1~t. σ(ω)\sigma(\omega) spectra show a non-Drude falloff at large frequencies. In particular for `optimum' doping nh0.2n_h \sim 0.2 we obtain in the low-ω,T\omega,T regime the relaxation rate τ10.6(ω+ξT)\tau^{-1} \sim 0.6 (\omega+\xi T) with ξ3\xi \sim 3, being consistent with the marginal Fermi liquid concept and experiments. Within the same regime we reproduce the nearly linear variation of dc resistivity ρ\rho with TT. This behavior is weakly dependent on JJ, provided that J<tJ<t.Comment: 21 pages of text plus 17 figures, postscrip

    Spectrum and thermodynamic properties of two-dimensional N=(1,1) super Yang-Mills theory with fundamental matter and a Chern-Simons term

    Get PDF
    We consider N=(1,1) super Yang-Mills theory in 1+1 dimensions with fundamentals at large-N_c. A Chern-Simons term is included to give mass to the adjoint partons. Using the spectrum of the theory, we calculate thermodynamic properties of the system as a function of the temperature and the Yang-Mills coupling. In the large-N_c limit there are two non-communicating sectors, the glueball sector, which we presented previously, and the meson-like sector that we present here. We find that the meson-like sector dominates the thermodynamics. Like the glueball sector, the meson sector has a Hagedorn temperature T_H, and we show that the Hagedorn temperature grows with the coupling. We calculate the temperature and coupling dependence of the free energy for temperatures below T_H. As expected, the free energy for weak coupling and low temperature grows quadratically with the temperature. Also the ratio of the free energies at strong coupling compared to weak coupling, r_{s-w}, for low temperatures grows quadratically with T. In addition, our data suggest that r_{s-w} tends to zero in the continuum limit at low temperatures.Comment: 34 p

    Temperature Dependence of Hall Response in Doped Antiferromagnets

    Full text link
    Using finite-temperature Lanczos method the frequency-dependent Hall response is calculated numerically for the t-J model on the square lattice and on ladders. At low doping, both the high-frequency RH* and the d.c. Hall coefficient RH0 follow qualitatively similar behavior at higher temperatures: being hole-like for T > Ts~1.5J and weakly electron-like for T < Ts. Consistent with experiments on cuprates, RH0 changes, in contrast to RH*, again to the hole-like sign below the pseudogap temperature T*, revealing a strong temperature variation for T->0.Comment: LaTeX, 4 pages, 4 figures, submitted to PR

    Spectral functions and pseudogap in the t-J model

    Full text link
    We calculate spectral functions within the t-J model as relevant to cuprates in the regime from low to optimum doping. On the basis of equations of motion for projected operators an effective spin-fermion coupling is derived. The self energy due to short-wavelength transverse spin fluctuations is shown to lead to a modified selfconsistent Born approximation, which can explain strong asymmetry between hole and electron quasiparticles. The coupling to long-wavelength longitudinal spin fluctuations governs the low-frequency behavior and results in a pseudogap behavior, which at low doping effectively truncates the Fermi surface.Comment: Minor corrections; to appear in Phys. Rev. B (RC
    corecore