586 research outputs found
The Structure of Urinary Catheter Encrusting Bacterial Biofilms
A major complication of long-term urethral catheterization is catheter blockage by encrustation. We have examined 20 encrusted catheters and in each case crystal formation was associated with the presence of bacterial biofilms on the luminal surfaces. Scanning electron microscopy and X-ray microanalysis indicated the presence of struvite and hydroxyapatite in the biofilms. Urease producing bacteria were colonizing 16 of the catheters. Proteus mirabilis was the commonest species being recovered from ten of the catheters. These results support the hypothesis that catheter encrustation has a similar etiology to that of infection-induced urinary stones and confirm that the important target for any attempt to control catheter encrustations is Pr. mirabilis
Green Manures or Fertilizer Nitrogen for Corn?
How much nitrogen does a legume green-manure crop contribute to the soil? What influence does it have on the yields of the following corn crop? How does this compare with side-dressed applications of fertilizer nitrogen
Biocide Activity against Urinary Catheter Pathogens
Antimicrobial effects of essential oils against bacteria associated with urinary catheter infection was assessed. Tests were performed on 14 different bacterial species cultured either planktonically or as biofilms. Biofilms were found to be up to 8-fold more tolerant of the test agents. Higher antimicrobial tolerance was also evident in tests conducted in artificial urine. Eugenol exhibited higher antimicrobial effects against both planktonic cells and biofilms than did terpinen, tea tree oil, and cineole
Biofilm Mediated Calculus Formation in the Urinary Tract
Mineralization and subsequent calculus formation is a common complication of biofilm infections. In the urinary tract, these infected calculi often arise from infections by urease-producing bacteria. Ammonia, liberated by bacterial urease activity, increases urine pH, resulting in the precipitation of Ca and Mg as carbonateapatite {Ca10(PO4,CO3)6(OH,CO3)2} and struvite (NH4MgP04·6H2O). These minerals become entrapped in the organic matrix which surrounds the infecting organisms and ultimately grow into mature calculi. When the causative organisms grow on urinary catheters and stents, the resulting mineralization can partially or completely obstruct urine flow. Mineralization may also exacerbate tissue damage, lead to a Joss of kidney function, and aid in the dissemination of microorganisms into deeper tissues. Several factors influence mineral formation and growth during struvite urolithiasis. These include host factors such as urine chemistry and anatomy of the urinary tract, the presence and characteristics of any foreign objects such as catheters, and bacterial factors such as the type of organisms present and their virulence factors. This review will address these and other factors which influence biofilm mineralization and calculus formation in the urinary tract
Quantum Rotor Engines
This chapter presents autonomous quantum engines that generate work in the
form of directed motion for a rotor. We first formulate a prototypical
clock-driven model in a time-dependent framework and demonstrate how it can be
translated into an autonomous engine with the introduction of a planar rotor
degree of freedom. The rotor plays both the roles of internal engine clock and
of work repository. Using the example of a single-qubit piston engine, the
thermodynamic performance is then reviewed. We evaluate the extractable work in
terms of ergotropy, the kinetic energy associated to net directed rotation, as
well as the intrinsic work based on the exerted torque under autonomous
operation; and we compare them with the actual energy output to an external
dissipative load. The chapter closes with a quantum-classical comparison of the
engine's dynamics. For the single-qubit piston example, we propose two
alternative representations of the qubit in an entirely classical framework:
(i) a coin flip model and (ii) a classical magnet moment, showing subtle
differences between the quantum and classical descriptions.Comment: Chapter of the upcoming book "Thermodynamics in the Quantum Regime -
Recent Progress and Outlook
Gyroless Spin-Stabilization Controller and Deorbiting Algorithm for CubeSats
CubeSats are becoming increasingly popular in the scientific community. While they provide a whole new range of opportunities for space exploration, they also come with their own challenges. One of the main concerns is the negative impact which they can have in the space debris problem. Commonly lacking from attitude determination and propulsion capabilities, it has been difficult to provide CubeSats with means for active deorbiting. While electric propulsion technology has been emerging for its application in CubeSats, little or no literature is available on methods to enable it to be used for deorbiting purposes, especially within the tight constraints faced by these nanosatellites. We present a new and simple algorithm for CubeSat deorbiting, which proposes the use of novel electric propulsion technology with minimum sensing and actuation capabilities. The algorithm is divided into two stages: a spin-stabilization control; and a deorbiting-phase detection. The spin-stabilization control is inspired by the B-dot controller. It does not require gyroscopes, but only requires magnetometers and magnetorquers as sensors and actuators, respectively. The deorbiting-phase detection is activated once the satellite is spin-stabilized. The algorithm can be easily implementable as it does not require any attitude information other than the orbital information, e.g., from the Global Positioning System receiver, which could be easily installed in CubeSats. The effectiveness of each part of the algorithms is validated through numerical simulations. The proposed algorithms outperform the existing approaches such as deorbiting sails, inflatable structures, and electrodynamic tethers in terms of deorbiting times. Stability and robustness analysis are also provided. The proposed algorithm is ready to be implemented with minimal effort and provides a robust solution to the space junk mitigation efforts
Reflection and Scattering by a Slightly Undulating Interface
Reflection and refraction of plane waves at a perfectly planar interface have been well studied in the literature. Solutions of the coefficients of reflection and refraction can be found in a variety of sources, e.g. [1]. The reflected and refracted waves have been used to develop ultrasonic non—destructive evaluation techniques to detect flaws in fiber—reinforced composite plates [2] — [4]
Chemistry, transport and dry deposition of trace gases in the boundary layer over the tropical Atlantic Ocean and the Guyanas during the GABRIEL field campaign
We present a comparison of different Lagrangian and chemical box model calculations with measurement data obtained during the GABRIEL campaign over the tropical Atlantic Ocean and the Amazon rainforest in the Guyanas, October 2005. Lagrangian modelling of boundary layer (BL) air constrained by measurements is used to derive a horizontal gradient (&asymp;5.6 pmol/mol km<sup>&minus;1</sup>) of CO from the ocean to the rainforest (east to west). This is significantly smaller than that derived from the measurements (16&ndash;48 pmol/mol km<sup>&minus;1</sup>), indicating that photochemical production from organic precursors alone cannot explain the observed strong gradient. It appears that HCHO is overestimated by the Lagrangian and chemical box models, which include dry deposition but not exchange with the free troposphere (FT). The relatively short lifetime of HCHO implies substantial BL-FT exchange. The mixing-in of FT air affected by African and South American biomass burning at an estimated rate of 0.12 h<sup>&minus;1</sup> increases the CO and decreases the HCHO mixing ratios, improving agreement with measurements. A mean deposition velocity of 1.35 cm/s for H<sub>2</sub>O<sub>2</sub> over the ocean as well as over the rainforest is deduced assuming BL-FT exchange adequate to the results for CO. The measured increase of the organic peroxides from the ocean to the rainforest (&asymp;0.66 nmol/mol d<sup>&minus;1</sup>) is significantly overestimated by the Lagrangian model, even when using high values for the deposition velocity and the entrainment rate. Our results point at either heterogeneous loss of organic peroxides and/or their radical precursors, underestimated photodissociation or missing reaction paths of peroxy radicals not forming peroxides in isoprene chemistry. We calculate a mean integrated daytime net ozone production (NOP) in the BL of (0.2&plusmn;5.9) nmol/mol (ocean) and (2.4&plusmn;2.1) nmol/mol (rainforest). The NOP strongly correlates with NO and has a positive tendency in the boundary layer over the rainforest
- …