561 research outputs found

    Results from Seven Years of AMANDA-II

    Full text link
    AMANDA is a first-generation high energy neutrino telescope, which has taken data at the South Pole in its final configuration since 2000. Results from seven years of operation are presented here, including observation of the atmopheric neutrino flux and searches for astrophysical neutrinos from cosmic ray accelerators, gamma ray bursts, and dark matter annihilations. In 2007, AMANDA was incorporated into the IceCube neutrino telescope, where its higher density of instrumentation improves the low energy response. In the near future, AMANDA will be replaced by the IceCube Deep Core, a purpose-built low energy extension of IceCube.Comment: Presented at Neutrino 2008, Christchurch, New Zealan

    Climate change and increased risk for the insurance sector: A global perspective and an assessment for the Netherlands.

    Get PDF
    Climate change is projected to increase the frequency and severity of extreme weather events. As a consequence, economic losses caused by natural catastrophes could increase significantly. This will have considerable consequences for the insurance sector. On the one hand, increased risk from weather extremes requires assessing expected changes in damage and including adequate climate change projections in risk management. On the other hand, climate change can also bring new business opportunities for insurers. This paper gives an overview of the consequences of climate change for the insurance sector and discusses several strategies to cope with and adapt to increased risks. The particular focus is on the Dutch insurance sector, as the Netherlands is extremely vulnerable to climate change, especially with regard to extreme precipitation and flooding. Current risk sharing arrangements for weather risks are examined while potential new business opportunities, adaptation strategies, and public-private partnerships are identified. © The Author(s) 2009

    High Energy Neutrino Telescopes

    Full text link
    This paper presents a review of the history, motivation and current status of high energy neutrino telescopes. Many years after these detectors were first conceived, the operation of kilometer-cubed scale detectors is finally on the horizon at both the South Pole and in the Mediterranean Sea. These new detectors will perhaps provide us the first view of high energy astrophysical objects with a new messenger particle and provide us with our first real glimpse of the distant universe at energies above those accessible by gamma-ray instruments. Some of the topics that can be addressed by these new instruments include the origin of cosmic rays, the nature of dark matter, and the mechanisms at work in high energy astrophysical objects such as gamma-ray bursts, active galactic nuclei, pulsar wind nebula and supernova remnants.Comment: 33 pages, 21 figures, accepted for publication in the New Journal of Physic
    corecore