286 research outputs found
Editorial: The Impact of Microorganisms on Consumption of Atmospheric Trace Gases
Editorial on the Research Topic: The Impact of Microorganisms on Consumption of Atmospheric Trace Gase
Computed tomography-osteoabsorptiometry for assessing the density distribution of subchondral bone as a measure of long-term mechanical adaptation in individual joints
To estimate subchondral mineralisation patterns which represent the long-term loading history of individual joints, a method has been developed employing computed tomography (CT) which permits repeated examination of living joints. The method was tested on 5 knee, 3 sacroiliac, 3 ankle and 5 shoulder joints and then investigated with X-ray densitometry. A CT absorptiometric presentation and maps of the area distribution of the subchondral bone density areas were derived using an image analyser. Comparison of the results from both X-ray densitometry and CT-absorptiometry revealed almost identical pictures of distribution of the subchondral bone density. The method may be used to examine subchondral mineralisation as a measure of the mechanical adaptability of joints in the living subject
Vibrational Spectroscopy for Pathology from Biochemical Analysis to Diagnostic Tool
Cervical cancer is the second most common cancer in women worldwide with 80% of cases arising in the developing world. The mortality associated with cervical cancer can be reduced if this disease is detected at the early stages of development or at the pre-malignant state (cervical intra-epithelial neoplasia, CIN). The aim of this study was to investigate the potential of Raman spectroscopy as a diagnostic tool to detect biochemical changes accompanying cervical cancer progression. Raman spectra were acquired from proteins, nucleic acids, lipids and carbohydrates in order to gain an insight into the biochemical composition of cells and tissues. Spectra were also obtained from histological samples of normal, CIN and invasive carcinoma tissue from 40 patients. Multivariate analysis of the spectra was carried out to develop a classification model to discriminate normal from abnormal tissue. The results show that Raman spectroscopy displays a high sensitivity to biochemical changes in tissue during disease progression resulting in an exceptional prediction accuracy when discriminating between normal cervical tissue, invasive carcinoma and cervical intra-epithelial neoplasia (CIN). Raman spectroscopy shows enormous clinical potential as a rapid non invasive diagnostic tool for cervical and other cancers
Differential Impact of Plant Secondary Metabolites on the Soil Microbiota
Plant metabolites can shape the microbial community composition in the soil. Two indole metabolites, benzoxazolinone (BOA) and gramine, produced by different Gramineae species, and quercetin, a flavonoid synthesized by many dicot species, were studied for their impacts on the community structure of field soil bacteria. The three plant metabolites were directly added to agricultural soil over a period of 28 days. Alterations in bacterial composition were monitored by next generation sequencing of 16S rRNA gene PCR products and phospholipid fatty acid analysis. Treatment of the soil with the plant metabolites altered the community composition from phylum to amplicon sequence variant (ASV) level. Alpha diversity was significantly reduced by BOA or quercetin, but not by gramine. BOA treatment caused a decrease of the relative abundance of 11 ASVs, while only 10 ASVs were increased. Gramine or quercetin treatment resulted in the increase in relative abundance of many more ASVs (33 or 38, respectively), most of them belonging to the Proteobacteria. Isolation and characterization of cultivable bacteria indicated an enrichment in Pseudarthrobacter or Pseudomonas strains under BOA/quercetin or BOA/gramine treatments, respectively. Therefore, the effects of the treatments on soil bacteria were characteristic for each metabolite, with BOA exerting a predominantly inhibitory effect, with only few genera being able to proliferate, while gramine and quercetin caused the proliferation of many potentially beneficial strains. As a consequence, BOA or gramine biosynthesis, which have evolved in different barley species, is accompanied with the association of distinct bacterial communities in the soil, presumably after mutual adaptation during evolution
Analysis of Human Skin Tissue by Raman Microspectroscopy: Dealing with the Background
Raman microspectroscopy is widely used for molecular characterisation of tissue samples. Nevertheless, when working in vitro on tissue sections, the presence of a broad background to the spectra remains problematic and its removal requires advanced methods for pre-processing of the data. To date, research efforts have been primarily devoted to development of techniques of statistical analysis to extract the relevant information contained in the spectra. However, few attempts have been made to understand the origin of the background and to improve the protocols used for the collection of Raman spectra that could lead to the reduction or elimination of the background. It has been demonstrated that measurement at 785nm in water immersion significantly reduces the Raman background of both pure biochemical components and tissue sections, associating the background at 785nm with a scattering phenomenon rather than fluorescence. It is however of interest to probe the dependence of the observed background and any time evolution normally associated with photobleaching of fluorophores, under dry and immersed conditions, on the source wavelength. Using 785nm or 660nm as source, extended exposure of dried skin tissue sections to the laser results in a time dependent reduction of the background present in the Raman spectra. When working in water immersion, the overall background as well as the evolution over time is greatly reduced and the background is seen to stabilise after ~20 seconds exposure. Using 532 nm or 473 nm as source for the examination of dried tissue sections, visible photodamage of the sample limits the laser power usable for the collection of spectra to 5 mW. Immersion of the tissue sections protects against photodamage and laser powers of up to 30 mW can be used without any visible damage. Under these conditions, the background is significantly reduced and good quality Raman spectra can be recorded. By adapting the protocol usually used for the collection of Raman spectra, this study clearly demonstrates that other approaches rather than mathematical manipulation of the data can be used to deal with the intrinsic background commonly observable. Notably, the dependence of the background and its time evolution under prolonged exposure on sample environment potentially sheds light on its origin as due to sample morphology (scattering) rather than chemical content (fluorescence). Overall, the study demonstrates that, in addition to reduced background, the photostability of the samples is significantly enhanced in an immersion geometry
Electronic Structure of Dangling Bonds in Amorphous Silicon Studied via a Density-Matrix Functional Method
A structural model of hydrogenated amorphous silicon containing an isolated
dangling bond is used to investigate the effects of electron interactions on
the electronic level splittings, localization of charge and spin, and
fluctuations in charge and spin. These properties are calculated with a
recently developed density-matrix correlation-energy functional applied to a
generalized Anderson Hamiltonian, consisting of tight-binding one-electron
terms parametrizing hydrogenated amorphous silicon plus a local interaction
term. The energy level splittings approach an asymptotic value for large values
of the electron-interaction parameter U, and for physically relevant values of
U are in the range 0.3-0.5 eV. The electron spin is highly localized on the
central orbital of the dangling bond while the charge is spread over a larger
region surrounding the dangling bond site. These results are consistent with
known experimental data and previous density-functional calculations. The spin
fluctuations are quite different from those obtained with unrestricted
Hartree-Fock theory.Comment: 6 pages, 6 figures, 1 tabl
High-Pressure Amorphous Nitrogen
The phase diagram and stability limits of diatomic solid nitrogen have been
explored in a wide pressure--temperature range by several optical spectroscopic
techniques. A newly characterized narrow-gap semiconducting phase has
been found to exist in a range of 80--270 GPa and 10--510 K. The vibrational
and optical properties of the phase produced under these conditions
indicate that it is largely amorphous and back transforms to a new molecular
phase. The band gap of the phase is found to decrease with pressure
indicating possible metallization by band overlap above 280 GPa.Comment: 5 pages, 4 figure
Draft genome sequences of gammaproteobacterial methanotrophs isolated from marine ecosystems
The genome sequences of Methylobacter marinus A45, Methylobacter sp. strain BBA5.1, and Methylomarinum vadi IT-4 were obtained. These aerobic methanotrophs are typical members of coastal and hydrothermal vent marine ecosystems
Soil methane sink capacity response to a long-term wildfire chronosequence in Northern Sweden
Boreal forests occupy nearly one fifth of the terrestrial land surface and are recognised as globally important regulators of carbon (C) cycling and greenhouse gas emissions. Carbon sequestration processes in these forests include assimilation of CO2 into biomass and subsequently into soil organic matter, and soil microbial oxidation of methane (CH4). In this study we explored how ecosystem retrogression, which drives vegetation change, regulates the important process of soil CH4 oxidation in boreal forests. We measured soil CH4 oxidation processes on a group of 30 forested islands in northern Sweden differing greatly in fire history, and collectively representing a retrogressive chronosequence, spanning 5000 years. Across these islands the build-up of soil organic matter was observed to increase with time since fire disturbance, with a significant correlation between greater humus depth and increased net soil CH4 oxidation rates. We suggest that this increase in net CH4 oxidation rates, in the absence of disturbance, results as deeper humus stores accumulate and provide niches for methanotrophs to thrive. By using this gradient we have discovered important regulatory controls on the stability of soil CH4 oxidation processes that could not have not been explored through shorter-term experiments. Our findings indicate that in the absence of human interventions such as fire suppression, and with increased wildfire frequency, the globally important boreal CH4 sink could be diminished
Hydrogen for synthetic fuels via nuclear energy
Fluctuations in availability and recent increases in price of petroleum have had profound effects on the national economy. As synthetic fuels, in particular, hydrogen, become increasingly attractive, nuclear energy has a role in developing such fuels. It is postulated that the nuclear radiation of the fission process itself can be utilized directly in fluid fueled devices or radiation and heat can be used in special purpose solid-fuel reactors. Both fusion and fission are considered in this light.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44905/1/10894_2005_Article_BF01063684.pd
- …