112 research outputs found

    SO(2)-Equivariant Downwash Models for Close Proximity Flight

    Full text link
    Multirotors flying in close proximity induce aerodynamic wake effects on each other through propeller downwash. Conventional methods have fallen short of providing adequate 3D force-based models that can be incorporated into robust control paradigms for deploying dense formations. Thus, learning a model for these downwash patterns presents an attractive solution. In this paper, we present a novel learning-based approach for modelling the downwash forces that exploits the latent geometries (i.e. symmetries) present in the problem. We demonstrate that when trained with only 5 minutes of real-world flight data, our geometry-aware model outperforms state-of-the-art baseline models trained with more than 15 minutes of data. In dense real-world flights with two vehicles, deploying our model online improves 3D trajectory tracking by nearly 36% on average (and vertical tracking by 56%)

    The nucleation behavior of supercooled water vapor in helium

    Get PDF
    The nucleation behavior of supersaturated water vapor in helium is experimentally investigated in the temperature range of 200–240 K. The experiments are performed using a pulse expansion wave tube. The experimental results show a sharp transition in the nucleation rates at 207 K. We suggest that the transition is due to the transition of vapor/liquid to vapor/solid nucleation (ordered with decreasing temperature). A qualitative theoretical explanation is given based on the classical nucleation theory and the surface energy of ice

    MicroRNAs in AKI and kidney transplantation

    Get PDF
    MicroRNAs are epigenetic regulators of gene expression at the posttranscriptional level. They are involved in intercellular communication and crosstalk between different organs. As key regulators of homeostasis, their dysregulation underlies several morbidities including kidney disease. Moreover, their remarkable stability in plasma and urine makes them attractive biomarkers. Beyond biomarker studies, clinical microRNA research in nephrology in recent decades has focused on the discovery of specific microRNA signatures and the identification of novel targets for therapy and/or disease prevention. However, much of this research has produced equivocal results and there is a need for standardization and confirmation in prospective trials. This review aims to provide an overview of general concepts and available clinical evidence in both the pathophysiology and biomarker fields for the role of microRNA in AKI and kidney transplantation

    Dynamics at a smeared phase transition

    Full text link
    We investigate the effects of rare regions on the dynamics of Ising magnets with planar defects, i.e., disorder perfectly correlated in two dimensions. In these systems, the magnetic phase transition is smeared because static long-range order can develop on isolated rare regions. We first study an infinite-range model by numerically solving local dynamic mean-field equations. Then we use extremal statistics and scaling arguments to discuss the dynamics beyond mean-field theory. In the tail region of the smeared transition the dynamics is even slower than in a conventional Griffiths phase: the spin autocorrelation function decays like a stretched exponential at intermediate times before approaching the exponentially small equilibrium value following a power law at late times.Comment: 10 pages, 8eps figures included, final version as publishe

    Multicomponent dynamical systems: SRB measures and phase transitions

    Full text link
    We discuss a notion of phase transitions in multicomponent systems and clarify relations between deterministic chaotic and stochastic models of this type of systems. Connections between various definitions of SRB measures are considered as well.Comment: 13 pages, LaTeX 2

    Phase transition and correlation decay in Coupled Map Lattices

    Full text link
    For a Coupled Map Lattice with a specific strong coupling emulating Stavskaya's probabilistic cellular automata, we prove the existence of a phase transition using a Peierls argument, and exponential convergence to the invariant measures for a wide class of initial states using a technique of decoupling originally developed for weak coupling. This implies the exponential decay, in space and in time, of the correlation functions of the invariant measures
    corecore