15,814 research outputs found

    Properties of the ground-state baryons in chiral perturbation theory

    Get PDF
    We review recent progress in the understanding of low-energy baryon structure by means of chiral perturbation theory. In particular, we discuss the application of this formalism to the description of various properties such as the baryon-octet magnetic moments, the electromagnetic structure of decuplet resonances and the hyperon vector coupling f1(0)f_1(0). Moreover, we present the results on the chiral extrapolation of recent lattice QCD results on the lowest-lying baryon masses and we predict the corresponding baryonic sigma-terms.Comment: 6 pages; shortened version to appear in the proceedings of QCD1

    Proton rich nuclei at and beyond the proton drip line in the Relativistic Mean Field theory

    Full text link
    Ground state properties of proton-rich odd-ZZ nuclei in the region 55≤Z≤7355\le Z \le 73 are studied in the relativistic mean field (RMF) theory. The RMF equations are solved by using the expansion method in the Harmonic-Oscillator basis. In the particle-particle channel, we use the state-dependent BCS method with a zero-range δ\delta-force, which has been proved to be effective even for neutron-rich nuclei. All the ground state properties, including the one-proton separation energies, the ground state deformations, the last occupied proton orbits and the locations of proton drip line, are calculated. Good agreement with both the available experimental data and the predictions of the RHB method are obtained.Comment: the version to appear in Progress of Theoretical Physics, more discussions adde

    Masses, Deformations and Charge Radii--Nuclear Ground-State Properties in the Relativistic Mean Field Model

    Full text link
    We perform a systematic study of the ground-state properties of all the nuclei from the proton drip line to the neutron drip line throughout the periodic table employing the relativistic mean field model. The TMA parameter set is used for the mean-field Lagrangian density, and a state-dependent BCS method is adopted to describe the pairing correlation. The ground-state properties of a total of 6969 nuclei with Z,N≥8Z,N\ge 8 and Z≤100Z\le 100 from the proton drip line to the neutron drip line, including the binding energies, the separation energies, the deformations, and the rms charge radii, are calculated and compared with existing experimental data and those of the FRDM and HFB-2 mass formulae. This study provides the first complete picture of the current status of the descriptions of nuclear ground-state properties in the relativistic mean field model. The deviations from existing experimental data indicate either that new degrees of freedom are needed, such as triaxial deformations, or that serious effort is needed to improve the current formulation of the relativistic mean field model.Comment: 16 pages, 5 figures, to appear in Progress of Theoretical Physic
    • …
    corecore