129 research outputs found

    Geospatial relationships of air pollution and acute asthma events across the Detroit–Windsor international border: Study design and preliminary results

    Get PDF
    The Geospatial Determinants of Health Outcomes Consortium (GeoDHOC) study investigated ambient air quality across the international border between Detroit, Michigan, USA and Windsor, Ontario, Canada and its association with acute asthma events in 5- to 89-year-old residents of these cities. NO2, SO2, and volatile organic compounds (VOCs) were measured at 100 sites, and particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs) at 50 sites during two 2-week sampling periods in 2008 and 2009. Acute asthma event rates across neighborhoods in each city were calculated using emergency room visits and hospitalizations and standardized to the overall age and gender distribution of the population in the two cities combined. Results demonstrate that intra-urban air quality variations are related to adverse respiratory events in both cities. Annual 2008 asthma rates exhibited statistically significant positive correlations with total VOCs and total benzene, toluene, ethylbenzene and xylene (BTEX) at 5-digit zip code scale spatial resolution in Detroit. In Windsor, NO2, VOCs, and PM10 concentrations correlated positively with 2008 asthma rates at a similar 3-digit postal forward sortation area scale. The study is limited by its coarse temporal resolution (comparing relatively short term air quality measurements to annual asthma health data) and interpretation of findings is complicated by contrasts in population demographics and health-care delivery systems in Detroit and Windsor

    A terrestrial planet candidate in a temperate orbit around Proxima Centauri

    Get PDF
    At a distance of 1.295 parsecs, the red dwarf Proxima Centauri (α Centauri C, GL 551, HIP 70890 or simply Proxima) is the Sun’s closest stellar neighbour and one of the best-studied low-mass stars. It has an effective temperature of only around 3,050 kelvin, a luminosity of 0.15 per cent of that of the Sun, a measured radius of 14 per cent of the radius of the Sun and a mass of about 12 per cent of the mass of the Sun. Although Proxima is considered a moderately active star, its rotation period is about 83 days and its quiescent activity levels and X-ray luminosity are comparable to those of the Sun. Here we report observations that reveal the presence of a small planet with a minimum mass of about 1.3 Earth masses orbiting Proxima with a period of approximately 11.2 days at a semi-major-axis distance of around 0.05 astronomical units. Its equilibrium temperature is within the range where water could be liquid on its surface

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Symptomatic asymmetry in the first six months of life: differential diagnosis

    Get PDF
    Asymmetry in infancy is a clinical condition with a wide variation in appearances (shape, posture, and movement), etiology, localization, and severity. The prevalence of an asymmetric positional preference is 12% of all newborns during the first six months of life. The asymmetry is either idiopathic or symptomatic. Pediatricians and physiotherapists have to distinguish symptomatic asymmetry (SA) from idiopathic asymmetry (IA) when examining young infants with a positional preference to determine the prognosis and the intervention strategy. The majority of cases will be idiopathic, but the initial presentation of a positional preference might be a symptom of a more serious underlying disorder. The purpose of this review is to synthesize the current information on the incidence of SA, as well as the possible causes and the accompanying signs that differentiate SA from IA. This review presents an overview of the nine most prevalent disorders in infants in their first six months of life leading to SA. We have discovered that the literature does not provide a comprehensive analysis of the incidence, characteristics, signs, and symptoms of SA. Knowledge of the presented clues is important in the clinical decision making with regard to young infants with asymmetry. We recommend to design a valid and useful screening instrument

    Variability of Brown Dwarfs

    Full text link
    Brown dwarfs constitute a missing link between low-mass stars and giant planets. Their atmospheres display chemical species typical of planets, and one could wonder whether they also have weather-like patterns. While brown dwarf surface features cannot be directly resolved, the photometric and spectroscopic modulations induced by these features, as they rotate in and out of view, provide a wealth of information on the evolution of their atmosphere. A review of brown dwarfs variability through the L, T and Y spectral types sequence is presented, as well as the constraints that they set on the nature of weather-like patterns on their surface.Comment: Accepted chapter in the "Handbook of Exoplanets"; Springe

    Exoplanet mass estimation for a sample of targets for the <i>Ariel</i> mission

    Get PDF
    Ariel’s ambitious goal to survey a quarter of known exoplanets will transform our knowledge of planetary atmospheres. Masses measured directly with the radial velocity technique are essential for well determined planetary bulk properties. Radial velocity masses will provide important checks of masses derived from atmospheric fits or alternatively can be treated as a fixed input parameter to reduce possible degeneracies in atmospheric retrievals. We quantify the impact of stellar activity on planet mass recovery for the Ariel mission sample using Sun-like spot models scaled for active stars combined with other noise sources. Planets with necessarily well-determined ephemerides will be selected for characterisation with Ariel. With this prior requirement, we simulate the derived planet mass precision as a function of the number of observations for a prospective sample of Ariel targets. We find that quadrature sampling can significantly reduce the time commitment required for follow-up RVs, and is most effective when the planetary RV signature is larger than the RV noise. For a typical radial velocity instrument operating on a 4 m class telescope and achieving 1 m s−1 precision, between ~17% and ~ 37% of the time commitment is spent on the 7% of planets with mass Mp ⊕. In many low activity cases, the time required is limited by asteroseismic and photon noise. For low mass or faint systems, we can recover masses with the same precision up to ~3 times more quickly with an instrumental precision of ~10 cm s−1

    Interferometric Observations of Rapidly Rotating Stars

    Full text link
    Optical interferometry provides us with a unique opportunity to improve our understanding of stellar structure and evolution. Through direct observation of rotationally distorted photospheres at sub-milliarcsecond scales, we are now able to characterize latitude dependencies of stellar radius, temperature structure, and even energy transport. These detailed new views of stars are leading to revised thinking in a broad array of associated topics, such as spectroscopy, stellar evolution, and exoplanet detection. As newly advanced techniques and instrumentation mature, this topic in astronomy is poised to greatly expand in depth and influence.Comment: Accepted for publication in A&AR
    • …
    corecore