10,685 research outputs found
Spatial genetic structure in the saddled sea bream (Oblada melanura [Linnaeus, 1758]) suggests multi-scaled patterns of connectivity between protected and unprotected areas in the Western Mediterranean Sea
Marine protected areas (MPAs) and networks of MPAs are advocated worldwide for the achievement of marine conservation objectives. Although the knowledge about population connectivity is considered fundamental for the optimal design of MPAs and networks, the amount of information available for the Mediterranean Sea is currently scarce. We investigated the genetic structure of the saddled sea bream ( Oblada melanura) and the level of genetic connectivity between protected and unprotected locations, using a set of 11 microsatellite loci. Spatial patterns of population differentiation were assessed locally (50-100 km) and regionally (500-1000 km), considering three MPAs of the Western Mediterranean Sea. All values of genetic differentiation between locations (Fst and Jost's D) were non-significant after Bonferroni correction, indicating that, at a relatively small spatial scale, protected locations were in general well connected with non-protected ones. On the other hand, at the regional scale, discriminant analysis of principal components revealed the presence of a subtle pattern of genetic heterogeneity that reflects the geography and the main oceanographic features (currents and barriers) of the study area. This genetic pattern could be a consequence of different processes acting at different spatial and temporal scales among which the presence of admixed populations, large population sizes and species dispersal capacity, could play a major role. These outcomes can have important implications for the conservation biology and fishery management of the saddled sea bream and provide useful information for genetic population studies of other coastal fishes in the Western Mediterranean Sea
Cosmic-ray propagation properties for an origin in SNRs
We have studied the impact of cosmic-ray acceleration in SNR on the spectra
of cosmic-ray nuclei in the Galaxy using a series expansion of the propagation
equation, which allows us to use analytical solutions for part of the problem
and an efficient numerical treatment of the remaining equations and thus
accurately describes the cosmic-ray propagation on small scales around their
sources in three spatial dimensions and time. We found strong variations of the
cosmic-ray nuclei flux by typically 20% with occasional spikes of much higher
amplitude, but only minor changes in the spectral distribution. The locally
measured spectra of primary cosmic rays fit well into the obtained range of
possible spectra. We further showed that the spectra of the secondary element
Boron show almost no variations, so that the above findings also imply
significant fluctuations of the Boron-to-Carbon ratio. Therefore the commonly
used method of determining CR propagation parameters by fitting
secondary-to-primary ratios appears flawed on account of the variations that
these ratios would show throughout the Galaxy.Comment: Accepted for publication in Ap
Casimir self-energy of a \delta-\delta' sphere
We extend previous work on the vacuum energy of a massless scalar field in
the presence of singular potentials. We consider a single sphere denoted by the
so-called "delta-delta prime" interaction. Contrary to the Dirac delta
potential, we find a nontrivial one-parameter family of potentials such that
the regularization procedure gives an unambiguous result for the Casimir
self-energy. The procedure employed is based on the zeta function
regularization and the cancellation of the heat kernel coefficient a_2. The
results obtained are in agreement with particular cases, such as the Dirac
delta or Robin and Dirichlet boundary conditions
Cluster: Mission Overview and End-of-Life Analysis
The Cluster mission is part of the scientific programme of the European Space Agency (ESA) and its purpose is the analysis of the Earth's magnetosphere. The Cluster project consists of four satellites. The selected polar orbit has a shape of 4.0 and 19.2 Re which is required for performing measurements near the cusp and the tail of the magnetosphere. When crossing these regions the satellites form a constellation which in most of the cases so far has been a regular tetrahedron. The satellite operations are carried out by the European Space Operations Centre (ESOC) at Darmstadt, Germany. The paper outlines the future orbit evolution and the envisaged operations from a Flight Dynamics point of view. In addition a brief summary of the LEOP and routine operations is included beforehand
How to hide a secret direction
We present a procedure to share a secret spatial direction in the absence of
a common reference frame using a multipartite quantum state. The procedure
guarantees that the parties can determine the direction if they perform joint
measurements on the state, but fail to do so if they restrict themselves to
local operations and classical communication (LOCC). We calculate the fidelity
for joint measurements, give bounds on the fidelity achievable by LOCC, and
prove that there is a non-vanishing gap between the two of them, even in the
limit of infinitely many copies. The robustness of the procedure under particle
loss is also studied. As a by-product we find bounds on the probability of
discriminating by LOCC between the invariant subspaces of total angular
momentum N/2 and N/2-1 in a system of N elementary spins.Comment: 4 pages, 1 figur
Evidence for directed percolation universality at the onset of spatiotemporal intermittency in coupled circle maps
We consider a lattice of coupled circle maps, a model arising naturally in
descriptions of solid state phenomena such as Josephson junction arrays. We
find that the onset of spatiotemporal intermittency (STI) in this system is
analogous to directed percolation (DP), with the transition being to an unique
absorbing state for low nonlinearities, and to weakly chaotic absorbing states
for high nonlinearities. We find that the complete set of static exponents and
spreading exponents at all critical points match those of DP very convincingly.
Further, hyperscaling relations are fulfilled, leading to independent controls
and consistency checks of the values of all the critical exponents. These
results lend strong support to the conjecture that the onset of STI in
deterministic models belongs to the DP universality class.Comment: Submitted to Physical Review
The "K-Correction" for Irradiated Emission Lines in LMXBs: Evidence for a Massive Neutron Star in X1822-371 (V691 CrA)
We study the K-correction for the case of emission lines formed in the X-ray
illuminated atmosphere of a Roche lobe filling star. We compute the
K-correction as function of the mass ratio 'q' and the disc flaring angle
'alpha' using a compact binary code where the companion's Roche lobe is divided
into 10^5 resolution elements. We also study the effect of the inclination
angle in the results. We apply our model to the case of the neutron star
low-mass X-ray binary X1822-371 (V691 CrA), where a K-emission velocity
K_em=300 +-8 km/s has been measured by Casares et al. (2003). Our numerical
results, combined with previous determination of system parameters, yields
1.61Msun < M_NS < 2.32Msun and 0.44Msun < M_2 < 0.56Msun for the two binary
components(i. e. 0.24 < q < 0.27), which provide a compelling evidence for a
massive neutron star in this system. We also discuss the implications of these
masses into the evolutionary history of the binary.Comment: 6 pages, 5 figures. Accepted for publication in Ap
- âŠ