675 research outputs found
Mass number scaling in ultra-relativistic nuclear collisions from a hydrodynamical approach
We study the different nucleus-nucleus collisions, O+Au, S+S, S+Ag, S+Au and
Pb+Pb, at the CERN-SPS energy in a one-fluid hydrodynamical approach using a
parametrization based on baryon stopping in terms of the thickness of colliding
nuclei. Good agreement with measured particle spectra is achieved. We deduce
the mass number scaling behaviour of the initial energy density. We find that
the equilibration time is nearly independent of the size of the colliding
nuclei.Comment: 27 pages, figures included, submitted to European Physical Journa
Dileptons and Photons from Coarse-Grained Microscopic Dynamics and Hydrodynamics Compared to Experimental Data
Radiation of dileptons and photons from high energy nuclear collisions
provides information on the space-time evolution of the hot dense matter
produced therein. We compute this radiation using relativistic hydrodynamics
and a coarse-grained version of the microscopic event generator UrQMD, both of
which provide a good description of the hadron spectra. The currently most
accurate dilepton and photon emission rates from perturbative QCD and from
experimentally-based hadronic calculations are used. Comparisons are made to
data on central Pb-Pb and Pb-Au collisions taken at the CERN SPS at a beam
energy of 158 A GeV. Both hydrodynamics and UrQMD provide very good
descriptions of the photon transverse momentum spectrum measured between 1 and
4 GeV, but slightly underestimate the low mass spectrum of e+e- pairs, even
with greatly broadened rho and omega vector mesons. Predictions are given for
the transverse momentum distribution of dileptons.Comment: 35 pages, 17 figure
Sound Mode Hydrodynamics from Bulk Scalar Fields
We study the hydrodynamic sound mode using gauge/gravity correspondence by
examining a generic black brane background's response to perturbations. We
assume that the background is generated by a single scalar field, and then
generalize to the case of multiple scalar fields. The relevant differential
equations obeyed by the gauge invariant variables are presented in both cases.
Finally, we present an analytical solution to these equations in a special
case; this solution allows us to determine the speed of sound and bulk
viscosity for certain special metrics. These results may be useful in
determining sound mode transport coefficients in phenomenologically motivated
holographic models of strongly coupled systems.Comment: 17 pages. Corrections made to one of the gauge invariant equations
(66). This equation was not used in the other main conclusions of the paper,
so the rest of the results are unchange
Initial Conditions in the One-Fluid Hydrodynamical Description of Ultrarelativistic Nuclear Collisions
We present a phenomenological model for the initial conditions needed in a one-fluid hydrodynamical description of ultrarelativistic nuclear collisions at CERN-SPS. The basic ingredient is the parametrization of the baryon stopping, i.e. the rapidity distribution, as a function of the thickness of the nuclei. We apply the model to S + S and Pb + Pb collisions and find after hydrodynamical evolution reasonable agreement with the data
Chemical freeze-out temperature in hydrodynamical description of Au+Au collisions at sqrt(s_NN) = 200 GeV
We study the effect of separate chemical and kinetic freeze-outs to the ideal
hydrodynamical flow in Au+Au collisions at RHIC (sqrt(s_NN) = 200 GeV energy).
Unlike in earlier studies we explore how these effects can be counteracted by
changes in the initial state of the hydrodynamical evolution. We conclude that
the reproduction of pion, proton and antiproton yields necessitates a chemical
freeze-out temperature of T = 150 MeV instead of T = 160 - 170 MeV motivated by
thermal models. Unlike previously reported, this lower temperature makes it
possible to reproduce the p_T-spectra of hadrons if one assumes very small
initial time, tau_0 = 0.2 fm/c. However, the p_T-differential elliptic flow,
v_2(p_T) remains badly reproduced. This points to the need to include
dissipative effects (viscosity) or some other refinement to the model.Comment: 8 pages, 7 figures; Accepted for publication in European Physical
Journal A; Added discussion about the effect of weak decays to chemical
freeze-out temperature and a figure showing isentropic curves in T-mu plan
Resolving the plasma profile via differential single inclusive suppression
The ability of experimental signatures to resolve the spatio-temporal profile
of an expanding quark gluon plasma is studied. In particular, the single
inclusive suppression of high momentum hadrons versus the centrality of a
heavy-ion collision and with respect to the reaction plane in non-central
collisions is critically examined. Calculations are performed in the higher
twist formalism for the modification of the fragmentation functions. Radically
different nuclear geometries are used. The influence of different initial gluon
distributions as well as different temporal evolution scenarios on the single
inclusive suppression of high momentum pions are outlined. It is demonstrated
that the modification versus the reaction plane is quite sensitive to the
initial spatial density. Such sensitivity remains even in the presence of a
strong elliptic flow.Comment: 5 pages, 4 figures, RevTex
Dependence of lepton pair emission on EoS and initial state
We present results from a hydrodynamic calculation for thermal emission of
lepton pairs in central lead-lead collisions at the CERN SPS energy. Dependence
of the emission on the initial conditions and Equation of State (EoS) is
considered and the spectra are compared with CERES data and calculated
distribution of Drell--Yan pairs.Comment: 4 pages, includes 4 ps-figures, talk at Quark Matter'97, Tsukuba,
Japa
Dynamical freeze-out condition in ultrarelativistic heavy ion collisions
We determine the decoupling surfaces for the hydrodynamic description of
heavy ion collisions at RHIC and LHC by comparing the local hydrodynamic
expansion rate with the microscopic pion-pion scattering rate. The pion
spectra for nuclear collisions at RHIC and LHC are computed by applying the
Cooper-Frye procedure on the dynamical-decoupling surfaces, and compared with
those obtained from the constant-temperature freeze-out surfaces. Comparison
with RHIC data shows that the system indeed decouples when the expansion rate
becomes comparable with the pion scattering rate. The dynamical decoupling
based on the rates comparison also suggests that the effective decoupling
temperature in central heavy ion collisions remains practically unchanged from
RHIC to LHC.Comment: 7 pages, 9 figure
Elliptic flow in nuclear collisions at the Large Hadron Collider
We use perfect-fluid hydrodynamical model to predict the elliptic flow
coefficients in Pb + Pb collisions at the Large Hadron Collider (LHC). The
initial state for the hydrodynamical calculation for central collisions
is obtained from the perturbative QCD + saturation (EKRT) model. The centrality
dependence of the initial state is modeled by the optical Glauber model. We
show that the baseline results obtained from the framework are in good
agreement with the data from the Relativistic Heavy Ion Collider (RHIC), and
show predictions for the spectra and elliptic flow of pions in Pb + Pb
collisions at the LHC. Also mass and multiplicity effects are discussed.Comment: 11 pages, 10 figure
- …