109 research outputs found

    Sources of heterogeneity in human monocyte subsets

    Get PDF
    AbstractHuman monocytes are commonly defined and discriminated by the extent of their cell surface expression of CD14 and CD16, with associated differences in function and phenotype related to the intensity of expression of these markers. With increasing interest into the function and behaviour of monocytes, it is important to have a clear understanding of how differing strategies of analysis can affect results and how different protocols and population backgrounds can affect this highly morphogenic cell type.Using PBMCs from populations with differing ethnicities and histories of parasite exposure we have characterized monocyte phenotype based on intensity of CD14 and CD16 expression. Using the surface markers HLA-DR, CCR2 and CX3CR1, we compared monocyte phenotype between populations and further assessed changes in monocytes with freezing and thawing of PBMCs.Our results reveal that there is a progression of surface marker expression based on intensity of CD14 or CD16 expression, stressing the importance of careful gating of monocyte subtypes. Freezing and thawing of the PBMCs has no effect generally on the monocytes, although it does lead to a decrease in CD16 and CX3CR1 expression. We show that there are differences in the monocyte populations based on ethnicity and history of exposure to the common parasites Plasmodium falciparum and Schistosoma haematobium.This study highlights that blood monocytes consist of a continuous population of cells, within which the dominant phenotype may vary dependent on the background of the study population. Comparing results from monocyte studies therefore needs to be done with great care, as ethnic background of donor population, gating strategy and processing of PBMCs may all have an effect on outcome of monocyte phenotype

    Roles of the Drosophila SK Channel (dSK) in Courtship Memory

    Get PDF
    A role for SK channels in synaptic plasticity has been very well-characterized. However, in the absence of simple genetic animal models, their role in behavioral memory remains elusive. Here, we take advantage of Drosophila melanogaster with its single SK gene (dSK) and well-established courtship memory assay to investigate the contribution of this channel to memory. Using two independent dSK alleles, a null mutation and a dominant negative subunit, we show that while dSK negatively regulates the acquisition of short-term memory 30 min after a short training session, it is required for normal long-term memory 24 h after extended training. These findings highlight important functions for dSK in courtship memory and suggest that SK channels can mediate multiple forms of behavioral plasticity

    Distribution of the Octopamine Receptor AmOA1 in the Honey Bee Brain

    Get PDF
    Octopamine plays an important role in many behaviors in invertebrates. It acts via binding to G protein coupled receptors located on the plasma membrane of responsive cells. Several distinct subtypes of octopamine receptors have been found in invertebrates, yet little is known about the expression pattern of these different receptor subtypes and how each subtype may contribute to different behaviors. One honey bee (Apis mellifera) octopamine receptor, AmOA1, was recently cloned and characterized. Here we continue to characterize the AmOA1 receptor by investigating its distribution in the honey bee brain. We used two independent antibodies produced against two distinct peptides in the carboxyl-terminus to study the distribution of the AmOA1 receptor in the honey bee brain. We found that both anti-AmOA1 antibodies revealed labeling of cell body clusters throughout the brain and within the following brain neuropils: the antennal lobes; the calyces, pedunculus, vertical (alpha, gamma) and medial (beta) lobes of the mushroom body; the optic lobes; the subesophageal ganglion; and the central complex. Double immunofluorescence staining using anti-GABA and anti-AmOA1 receptor antibodies revealed that a population of inhibitory GABAergic local interneurons in the antennal lobes express the AmOA1 receptor in the cell bodies, axons and their endings in the glomeruli. In the mushroom bodies, AmOA1 receptors are expressed in a subpopulation of inhibitory GABAergic feedback neurons that ends in the visual (outer half of basal ring and collar regions) and olfactory (lip and inner basal ring region) calyx neuropils, as well as in the collar and lip zones of the vertical and medial lobes. The data suggest that one effect of octopamine via AmOA1 in the antennal lobe and mushroom body is to modulate inhibitory neurons

    Multimodal Chemosensory Integration through the Maxillary Palp in Drosophila

    Get PDF
    Drosophila melanogaster has an olfactory organ called the maxillary palp. It is smaller and numerically simpler than the antenna, and its specific role in behavior has long been unclear. Because of its proximity to the mouthparts, I explored the possibility of a role in taste behavior. Maxillary palp was tuned to mediate odor-induced taste enhancement: a sucrose solution was more appealing when simultaneously presented with the odorant 4-methylphenol. The same result was observed with other odors that stimulate other types of olfactory receptor neuron in the maxillary palp. When an antennal olfactory receptor was genetically introduced in the maxillary palp, the fly interpreted a new odor as a sweet-enhancing smell. These results all point to taste enhancement as a function of the maxillary palp. It also opens the door for studying integration of multiple senses in a model organism
    corecore