271 research outputs found
Rapid distortion theory for differential diffusion
Rapid distortion theory (RDT) is used to examine differential diffusion of active and passive scalars in unsheared, initially isotropic turbulence. RDT is well suited to study differential diffusion because it applies to strongly stratified flows with weak turbulenceâthat is, the conditions under which differential diffusion occurs. The theory reproduces several key features of the evolution of scalar fluxes and scalar flux spectra observed in direct numerical simulations (DNS). Predictions of the diffusivity ratio match laboratory results well when a parameter of the theory is related to a parameter of the experiments. RDT also allows parameters such as molecular diffusivities to be varied over a wider range than DNS can currently reach. RDT may prove to be a useful tool for computing mixing in weakly turbulent parts of the stratified ocean interior and possibly for parameterizing subgrid scale mixing in general circulation models
Buoyancy generated turbulence in stably stratified flow with shear
The energy evolution in buoyancy-generated turbulence subjected to shear depends on the gradient Richardson number Ri and the stratification number St, which is a ratio of the time scale of the initial buoyancy fluctuations to the time scale of the mean stratification. During an initial period, the flow state evolves as in the unsheared case. After this period, shear generates fluctuating velocity components for St=0.25, but it depletes the fluctuating vertical velocity component and temperature variance faster than in the unsheared case for St=4. Weak shear causes the kinetic and total energy to decrease faster than in the unsheared case, whereas strong shear adds more energy in comparison with the unsheared case. Energy increased with time in only one case considered (St=0.1 and Ri=0.04). When St\u3e1, the nonlinearity of the flow does not become significant even when Ri is small. Thus, results from rapid distortion theory and direct numerical simulation compare well. In particular, the theory reproduces trends in the energy evolution for St\u3e1
Energy- and flux-budget (EFB) turbulence closure model for the stably stratified flows. Part I: Steady-state, homogeneous regimes
We propose a new turbulence closure model based on the budget equations for
the key second moments: turbulent kinetic and potential energies: TKE and TPE
(comprising the turbulent total energy: TTE = TKE + TPE) and vertical turbulent
fluxes of momentum and buoyancy (proportional to potential temperature).
Besides the concept of TTE, we take into account the non-gradient correction to
the traditional buoyancy flux formulation. The proposed model grants the
existence of turbulence at any gradient Richardson number, Ri. Instead of its
critical value separating - as usually assumed - the turbulent and the laminar
regimes, it reveals a transition interval, 0.1< Ri <1, which separates two
regimes of essentially different nature but both turbulent: strong turbulence
at Ri<<1; and weak turbulence, capable of transporting momentum but much less
efficient in transporting heat, at Ri>1. Predictions from this model are
consistent with available data from atmospheric and lab experiments, direct
numerical simulation (DNS) and large-eddy simulation (LES).Comment: 40 pages, 6 figures, Boundary-layer Meteorology, resubmitted, revised
versio
Gustavo Schwartz
ABSTRACT -Stressed plants are generally more attacked by galling insects. In this study we investigated the relationship between population abundance and species richness of galling insects on the tree Alchornea castaneaefolia A. JUSS. (Euphorbiaceae), submited to stress induced by the hemiparasite Psittacanthus sp. (Loranthaceae) in the Amazon, Brazil. Branches of A. castaneaefolia attacked by the hemiparasite were more heavily infested by galling insects than non-attacked branches. The field observations partially corroborate the hypothesis that there would be an optimal level of host-plant stress for galling insect establishment
Nitrous oxide may not increase the risk of cancer recurrence after colorectal surgery: a follow-up of a randomized controlled trial
<p>Abstract</p> <p>Background</p> <p>Even the best cancer surgery is usually associated with minimal residual disease. Whether these remaining malignant cells develop into clinical recurrence is at least partially determined by adequacy of host defense, especially natural killer cell function. Anesthetics impair immune defenses to varying degrees, but nitrous oxide appears to be especially problematic. We therefore tested the hypothesis that colorectal-cancer recurrence risk is augmented by nitrous oxide administration during colorectal surgery.</p> <p>Methods</p> <p>We conducted a 4- to 8-year follow-up of 204 patients with colorectal cancer who were randomly assigned to 65% nitrous oxide (n = 97) or nitrogen (n = 107), balanced with isoflurane and remifentanil. The primary outcome was the time to cancer recurrence. Our primary analysis was a multivariable Cox-proportional-hazards regression model that included relevant baseline variables. In addition to treatment group, the model considered patient age, tumor grade, dissemination, adjacent organ invasion, vessel invasion, and the number of nodes involved. The study had 80% power to detect a 56% or greater reduction in recurrence rates (i.e., hazard ratio of 0.44 or less) at the 0.05 significance level.</p> <p>Results</p> <p>After adjusting for significant baseline covariables, risk of recurrence did not differ significantly for nitrous oxide and nitrogen, with a hazard ratio estimate (95% CI) of 1.10 (0.66, 1.83), <it>P </it>= 0.72. No two-way interactions with the treatment were statistically significant.</p> <p>Conclusion</p> <p>Colorectal-cancer recurrence risks were not greatly different in patients who were randomly assigned to 65% nitrous oxide or nitrogen during surgery. Our results may not support avoiding nitrous oxide use to prevent recurrence of colorectal cancer.</p> <p>Implications Statement</p> <p>The risk of colorectal cancer recurrence was similar in patients who were randomly assigned to 65% nitrous oxide or nitrogen during colorectal surgery.</p> <p>Trial Registration</p> <p>Current Controlled Clinical Trials NCT00781352 <url>http://www.clinicaltrials.gov</url></p
An Electrode Array for Limiting Blood Loss During Liver Resection: Optimization via Mathematical Modeling
Liver resection is the current standard treatment for patients with both primary and metastatic liver cancer. The principal causes of morbidity and mortality after liver resection are related to blood loss (typically between 0.5 and 1 L), especially in cases where transfusion is required. Blood transfusions have been correlated with decreased long-term survival, increased risk of perioperative mortality and complications. The goal of this study was to evaluate different designs of a radiofrequency (RF) electrode array for use during liver resection. The purpose of this electrode array is to coagulate a slice of tissue including large vessels before resecting along that plane, thereby significantly reducing blood loss. Finite Element Method models were created to evaluate monopolar and bipolar power application, needle and blade shaped electrodes, as well as different electrode distances. Electric current density, temperature distribution, and coagulation zone sizes were measured. The best performance was achieved with a design of blade shaped electrodes (5 Ă 0.1 mm cross section) spaced 1.5 cm apart. The electrodes have power applied in bipolar mode to two adjacent electrodes, then switched sequentially in short intervals between electrode pairs to rapidly heat the tissue slice. This device produces a ~1.5 cm wide coagulation zone, with temperatures over 97 ÂșC throughout the tissue slice within 3 min, and may facilitate coagulation of large vessels
- âŠ