186 research outputs found
From Coral Framework to Rhodolith Bed: Sedimentary Footprint of the 1982/1983 ENSO in the Galápagos
Without Abstract
Recommended from our members
Sedimentary Facies of the Eastern Pacific\u27s Northernmost Reef-Like Setting (Cabo Pulmo, Mexico)
Cabo Pulmo, Mexico, is often cited as the eastern Pacific\u27s northernmost coral reef. We investigated sedimentary dynamics to verify whether the system functions sedimentologically as a reef, which would mean that it retained internal sediment in a framework and exported peri-reefal sediment creating clearly identifiable facies dominated by reefal fauna. We mapped distribution of sediments using grab samples, the acoustic ground-discrimination systems QTC View and Echoplus at 50 kHz signal frequency and an IKONOS satellite image. Morphologically, the bay of Cabo Pulmo can be divided into intrusive dikes and rocky hardgrounds in less than 10 m depth and a sandy interior with rocky outcrops sloping to over 40 m. Reefal fauna without lasting framework-building but with production of typically reef-associated carbonate sediments, as well as a patch-reef facies were found on the dikes and hardgrounds. Sediments in the bay were a mixture of carbonates and siliciclastics and were influenced by a seasonal river near the bay\u27s center that imported siliciclastic material. To the north and south sediments had a higher carbonate content, although overall the bay was characterized by \u3e 50% siliciclastics. The shallower subtidal sands were dominated by mollusk fragments, whereas in depths \u3e 30 m planktonic foraminiferal sand was found. Acoustically and optically remote-sensed maps were used to differentiate between the rocky and sandy areas and to identify the presumed off-shelf transport pathway of reef-derived carbonates. Overall, the sedimentary system is characterized by carbonate production, but the coarser reef derived carbonates (coral and reef-dwelling mollusks) are transported off-shelf along a steep depth gradient and little typical peri-reef sediment remains. This transport is likely aided by storms. Since no sediment retaining frameworks are formed, the dikes cannot retain internal sediment, and the reefal fauna was not dominant in sediments throughout the bay, we conclude that Cabo Pulmo sedimentologically functions only in a limited way like a coral reef
Living on the Edge: High-Latitude Porites Carbonate Production Under Temperate Eutrophic Conditions
Non-framework building high-latitude coral communities have recently received increased attention as a result of their potential to act as refugia during global change, as proxies for such change and for testing the environmental tolerance limits of various species of coral. In this study, we report on high-resolution in situ measured environmental factors influencing the development of monospecific (Porites panamensis) non-framework building coral communities and the resulting coral-derived carbonate sediment production in the northern Gulf of California, Mexico (BahÃa de Los Angeles, 29°N, 113°E). Half-hourly measurements of temperature and chlorophyll a (a nutrient proxy) for a 1-year period indicate temperature extremes ranging from 14°C to 30°C, and average chlorophyll a values of 2.2 mg Chl a/m3(eutrophic). Even though P. panamensis only occur as small massive and encrusting colonies, they nonetheless show a significant carbonate sediment production potential (0.14 kg CaCO3/m2/year). A calculation of carbonate production rates vs amount of coral found in the sediment shows that this high-latitude community must have persisted for an extended period of time
Arctic sea-ice decline archived by multicentury annual-resolution record from crustose coralline algal proxy
Northern Hemisphere sea ice has been declining sharply over the past decades and 2012 exhibited the lowest Arctic summer sea-ice cover in historic times. Whereas ongoing changes are closely monitored through satellite observations, we have only limited data of past Arctic sea-ice cover derived from short historical records, indirect terrestrial proxies, and low-resolution marine sediment cores. A multicentury time series from extremely long-lived annual increment-forming crustose coralline algal buildups now provides the first high-resolution in situ marine proxy for sea-ice cover. Growth and Mg/Ca ratios of these Arctic-wide occurring calcified algae are sensitive to changes in both temperature and solar radiation. Growth sharply declines with increasing sea-ice blockage of light from the benthic algal habitat. The 646-y multisite record from the Canadian Arctic indicates that during the Little Ice Age, sea ice was extensive but highly variable on subdecadal time scales and coincided with an expansion of ice-dependent Thule/Labrador Inuit sea mammal hunters in the region. The past 150 y instead have been characterized by sea ice exhibiting multidecadal variability with a long-term decline distinctly steeper than at any time since the 14th century
Multi-specimen and multi-site calibration of Aleutian coralline algal Mg/Ca to sea surface temperature
Higher latitude oceanic and climatic reconstructions are needed to distinguish natural climate variability from anthropogenic warming in regions projected to experience significant increases in temperature during this century. Clathromorphum nereostra turn is a long-lived coralline alga abundant along the Aleutian archipelago that records seasonal to centennial fluctuations in seawater temperatures in its high-Mg calcite skeleton. Thus, C. nereostratum is an important proxy archive to reconstruct past seawater temperature variability in this data-poor subarctic region. Here, we measured magnesium to calcium ratios (Mg/Ca) by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) along the growth axis in six live-collected specimens from three islands in the Aleutian archipelago to assess Mg/Ca reproducibility and to calibrate algal Mg/Ca against modern gridded sea surface temperature (SST) data products. The master Mg/Ca SST transfer function, determined by averaging the algal Mg/Ca SST from each island (n = 6), resulted in a reconstruction error of +/-0.45 degrees C, a 31-46% reduction in error compared to the reconstruction error for a single alga. The master algal-SST record interpolated to monthly and annual resolution significantly varied with gridded SST data products (r(2) = 0.98, p < 0.0001, n = 517 and r(2) = .27, p < 0.0003, n = 44, respectively) for the period from 1960 to 2003. Therefore, coralline algal Mg/Ca-derived SST reconstructions record absolute changes in past SST variability in the Aleutian archipelago. The transfer functions developed here can be applied to Mg/Ca records generated from long-lived specimens of C. nereostra turn to reconstruct northern North Pacific and Bering Sea SST variability for the past several hundred years
Coralline alga reveals first marine record of subarctic North Pacific climate change
While recent changes in subarctic North Pacific climate had dramatic effects on ecosystems and fishery yields, past climate dynamics and teleconnection patterns are poorly understood due to the absence of century-long high-resolution marine records. We present the first 117-year long annually resolved marine climate history from the western Bering Sea/Aleutian Island region using information contained in the calcitic skeleton of the long-lived crustose coralline red alga Clathromorphum nereostratum, a previously unused climate archive. The skeletal δ18O-time series indicates significant warming and/or freshening of surface waters after the middle of the 20th century. Furthermore, the time series is spatiotemporally correlated with Pacific Decadal Oscillation (PDO) and tropical El Niño-Southern Oscillation (ENSO) indices. Even though the western Bering Sea/Aleutian Island region is believed to be outside the area of significant marine response to ENSO, we propose that an ENSO signal is transmitted via the Alaskan Stream from the Eastern North Pacific, a region of known ENSO teleconnections
Freshening of the Alaska Coastal Current Recorded By Coralline Algal Ba/Ca Ratios
Arctic Ocean freshening can exert a controlling influence on global climate, triggering strong feedbacks on ocean-atmospheric processes and affecting the global cycling of the world\u27s oceans. Glacier-fed ocean currents such as the Alaska Coastal Current are important sources of freshwater for the Bering Sea shelf, and may also influence the Arctic Ocean freshwater budget. Instrumental data indicate a multiyear freshening episode of the Alaska Coastal Current in the early 21st century. It is uncertain whether this freshening is part of natural multidecadal climate variability or a unique feature of anthropogenically induced warming. In order to answer this, a better understanding of past variations in the Alaska Coastal Current is needed. However, continuous long-term high-resolution observations of the Alaska Coastal Current have only been available for the last 2 decades. In this study, specimens of the long-lived crustose coralline alga Clathromorphum nereostratum were collected within the pathway of the Alaska Coastal Current and utilized as archives of past temperature and salinity. Results indicate that coralline algal Mg/Ca ratios provide a 60 year record of sea surface temperatures and track changes of the Pacific Decadal Oscillation, a pattern of decadal-to-multidecadal ocean-atmosphere climate variability centered over the North Pacific. Algal Ba/Ca ratios (used as indicators of coastal freshwater runoff) are inversely correlated to instrumentally measured Alaska Coastal Current salinity and record the period of freshening from 2001 to 2006. Similar multiyear freshening events are not evident in the earlier portion of the 60 year Ba/Ca record. This suggests that the 21st century freshening of the Alaska Coastal Current is a unique feature related to increasing glacial melt and precipitation on mainland Alaska
Twentieth century delta13C variability in surface water dissolved inorganic carbon recorded by coralline algae in the northern North Pacific Ocean and the Bering Sea
The oxygen isotopic composition and Mg/Ca ratios in the skeletons of long-lived coralline algae record ambient seawater temperature over time. Similarly, the carbon isotopic composition in the skeletons record δ13C values of ambient seawater dissolved inorganic carbon. Here, we measured δ13C in the coralline alga Clathromorphum nereostratum to test the feasibility of reconstructing the intrusion of anthropogenic CO2 into the northern North Pacific Ocean and Bering Sea. The δ13C was measured in the high Mg-calcite skeleton of three C. nereostratum specimens from two islands 500 km apart in the Aleutian archipelago. In the records spanning 1887 to 2003, the average decadal rate of decline in δ13C values increased from 0.03‰ yr−1 in the 1960s to 0.095‰ yr−1 in the 1990s, which was higher than expected due to solely the δ13C-Suess effect. Deeper water in this region exhibits higher concentrations of CO2 and low δ13C values. Transport of deeper water into surface water (i.e., upwelling) increases when the Aleutian Low is intensified. We hypothesized that the acceleration of the δ13C decline may result from increased upwelling from the 1960s to 1990s, which in turn was driven by increased intensity of the Aleutian Low. Detrended δ13C records also varied on 4–7 year and bidecadal timescales supporting an atmospheric teleconnection of tropical climate patterns to the northern North Pacific Ocean and Bering Sea manifested as changes in upwelling
North Pacific twentieth century decadal-scale variability is unique for the past 342 years
Reconstructed sea surface temperatures (SSTs) derived from Mg/Ca measurements in nine encrusting coralline algal skeletons from the Aleutian archipelago in the northernmost Pacific Ocean reveal an overall increase in SST from 1665 to 2007. In the Aleutian SST reconstruction, decadal-scale variability is a transient feature present during the 1700s and early 1800s and then fully emerging post-1950. SSTs vary coherently with available instrument records of cyclone variance and vacillate in and out of coherence with multicentennial Pacific Northwest drought reconstructions as a response to SST-driven alterations of storm tracks reaching North America. These results indicate that an influence of decadal-scale variability on the North Pacific storm tracks only became apparent during the midtwentieth century. Furthermore, what has been assumed as natural variability in the North Pacific, based on twentieth century instrumental data, is not consistent with the long-term natural variability evident in reconstructed SSTs predating the anthropogenic influence
- …