26 research outputs found

    pH-dependent production of molecular chlorine, bromine, and iodine from frozen saline surfaces

    Get PDF
    The mechanisms of molecular halogen production from frozen saline surfaces remain incompletely understood, limiting our ability to predict atmospheric oxidation and composition in polar regions. In this laboratory study, condensed-phase hydroxyl radicals (OH) were photochemically generated in frozen saltwater solutions that mimicked the ionic composition of ocean water. These hydroxyl radicals were found to oxidize Cl−, Br−, and I−, leading to the release of Cl2, Br2, I2, and IBr. At moderately acidic pH (buffered between 4.5 and 4.8), irradiation of ice containing OH precursors (either of hydrogen peroxide or nitrite ion) produced elevated amounts of I2. Subsequent addition of O3 produced additional I2, as well as small amounts of Br2. At lower pH (1.7–2.2) and in the presence of an OH precursor, rapid dark conversion of I− to I2 occurred from reactions with hydrogen peroxide or nitrite, followed by substantial photochemical production of Br2 upon irradiation. Exposure to O3 under these low pH conditions also increased production of Br2 and I2; this likely results from direct O3 reactions with halides, as well as the production of gas-phase HOBr and HOI that subsequently diffuse to frozen solution to react with Br− and I−. Photochemical production of Cl2 was only observed when the irradiated sample was composed of high-purity NaCl and hydrogen peroxide (acting as the OH precursor) at pH&thinsp;=&thinsp;1.8. Though condensed-phase OH was shown to produce Cl2 in this study, kinetics calculations suggest that heterogeneous recycling chemistry may be equally or more important for Cl2 production in the Arctic atmosphere. The condensed-phase OH-mediated halogen production mechanisms demonstrated here are consistent with those proposed from recent Arctic field observations of molecular halogen production from snowpacks. These reactions, even if slow, may be important for providing seed halogens to the Arctic atmosphere. Our results suggest the observed molecular halogen products are dependent on the relative concentrations of halides at the ice surface, as we only observe what diffuses to the air–surface interface.</p

    Temporal and spatial characteristics of ozone depletion events from measurements in the Arctic

    Get PDF
    Following polar sunrise in the Arctic springtime, tropospheric ozone episodically decreases rapidly to near-zero levels during ozone depletion events (ODEs). Many uncertainties remain in our understanding of ODE characteristics, including the temporal and spatial scales, as well as environmental drivers. Measurements of ozone, bromine monoxide (BrO), and meteorology were obtained during several deployments of autonomous, ice-tethered buoys (O-Buoys) from both coastal sites and over the Arctic Ocean; these data were used to characterize observed ODEs. Detected decreases in surface ozone levels during the onset of ODEs corresponded to a median estimated apparent ozone depletion timescale (based on both chemistry and the advection of O<sub>3</sub>-depleted air) of 11 h. If assumed to be dominated by chemical mechanisms, these timescales would correspond to larger-than-observed BrO mole fractions based on known chemistry and assumed other radical levels. Using backward air mass trajectories and an assumption that transport mechanisms dominate observations, the spatial scales for ODEs (defined by time periods in which ozone levels ≤15 nmol mol<sup>−1</sup>) were estimated to be 877 km (median), while areas estimated to represent major ozone depletions (<10 nmol mol<sup>−1</sup>) had dimensions of 282 km (median). These observations point to a heterogeneous boundary layer with localized regions of active, ozone-destroying halogen chemistry, interspersed among larger regions of previously depleted air that retain reduced ozone levels through hindered atmospheric mixing. Based on the estimated size distribution, Monte Carlo simulations showed it was statistically possible that all ODEs observed could have originated upwind, followed by transport to the measurement site. Local wind speed averages were low during most ODEs (median of ~3.6 m s<sup>−1</sup>), and there was no apparent dependence on local temperature

    Finding a Disappearing Nontimber Forest Resource: Using Grounded Visualization to Explore Urbanization Impacts on Sweetgrass Basketmaking in Greater Mt. Pleasant, South Carolina

    Get PDF
    Despite growing interest in urbanization and its social and ecological impacts on formerly rural areas, empirical research remains limited. Extant studies largely focus either on issues of social exclusion and enclosure or ecological change. This article uses the case of sweetgrass basketmaking in Mt. Pleasant, South Carolina, to explore the implications of urbanization, including gentrification, for the distribution and accessibility of sweetgrass, an economically important nontimber forest product (NTFP) for historically African American communities, in this rapidly growing area. We explore the usefulness of grounded visualization for research efforts that are examining the existence of fringe ecologies associated with NTFP. Our findings highlight the importance of integrated qualitative and quantitative analyses for revealing the complex social and ecological changes that accompany both urbanization and rural gentrification

    Using tunable infrared laser direct absorption spectroscopy for ambient hydrogen chloride detection : HCl-TILDAS

    Get PDF
    The largest inorganic, gas-phase reservoir of chlorine atoms in the atmosphere is hydrogen chloride (HCl), but challenges in quantitative sampling of this compound cause difficulties for obtaining high-quality, high-frequency measurements. In this work, tunable infrared laser direct absorption spectroscopy (TILDAS) was demonstrated to be a superior optical method for sensitive, in situ detection of HCl at the 2925.89645 cm-1 absorption line using a 3 μm inter-band cascade laser. The instrument has an effective path length of 204 m, 1 Hz precision of 7-8 pptv, and 3σ limit of detection ranging from 21 to 24 pptv. For longer averaging times, the highest precision obtained was 0.5 pptv with a 3σ limit of detection of 1.6 pptv at 2.4 min. HCl-TILDAS was also shown to have high accuracy when compared with a certified gas cylinder, yielding a linear slope within the expected 5 % tolerance of the reported cylinder concentration (slope = 0.964 ± 0.008). The use of heated inlet lines and active chemical passivation greatly improve the instrument response times to changes in HCl mixing ratios, with minimum 90 % response times ranging from 1.2 to 4.4 s depending on inlet flow rate. However, these response times lengthened at relative humidities >50 %, conditions under which HCl concentration standards were found to elicit a significantly lower response (-5.8 %). The addition of high concentrations of gas-phase nitric acid (>3.0 ppbv) were found to increase HCl signal (<10 %), likely due to acid displacement with HCl or particulate chloride adsorbed to inlet surfaces. The equilibrium model ISORROPIA suggested a potential of particulate chloride partitioning into HCl gas within the heated inlet system if allowed to thermally equilibrate, but field results did not demonstrate a clear relationship between particulate chloride and HCl signal obtained with a denuder installed on the inlet

    Canadian Arctic sea ice reconstructed from bromine in the Greenland NEEM ice core

    Get PDF
    Reconstructing the past variability of Arctic sea ice provides an essential context for recent multi-year sea ice decline, although few quantitative reconstructions cover the Holocene period prior to the earliest historical records 1,200 years ago. Photochemical recycling of bromine is observed over first-year, or seasonal, sea ice in so-called "bromine explosions" and we employ a 1-D chemistry transport model to quantify processes of bromine enrichment over first-year sea ice and depositional transport over multi-year sea ice and land ice. We report bromine enrichment in the Northwest Greenland Eemian NEEM ice core since the end of the Eemian interglacial 120,000 years ago, finding the maximum extension of first-year sea ice occurred approximately 9,000 years ago during the Holocene climate optimum, when Greenland temperatures were 2 to 3 degrees C above present values. First-year sea ice extent was lowest during the glacial stadials suggesting complete coverage of the Arctic Ocean by multi-year sea ice. These findings demonstrate a clear relationship between temperature and first-year sea ice extent in the Arctic and suggest multi-year sea ice will continue to decline as polar amplification drives Arctic temperatures beyond the 2 degrees C global average warming target of the recent COP21 Paris climate agreement

    Frequent new particle formation over the high Arctic pack ice by enhanced iodine emissions

    Get PDF
    In the central Arctic Ocean the formation of clouds and their properties are sensitive to the availability of cloud condensation nuclei (CCN). The vapors responsible for new particle formation (NPF), potentially leading to CCN, have remained unidentified since the first aerosol measurements in 1991. Here, we report that all the observed NPF events from the Arctic Ocean 2018 expedition are driven by iodic acid with little contribution from sulfuric acid. Iodic acid largely explains the growth of ultrafine particles (UFP) in most events. The iodic acid concentration increases significantly from summer towards autumn, possibly linked to the ocean freeze-up and a seasonal rise in ozone. This leads to a one order of magnitude higher UFP concentration in autumn. Measurements of cloud residuals suggest that particles smaller than 30 nm in diameter can activate as CCN. Therefore, iodine NPF has the potential to influence cloud properties over the Arctic Ocean

    Multidimensional Signals and Analytic Flexibility: Estimating Degrees of Freedom in Human-Speech Analyses

    Get PDF
    Recent empirical studies have highlighted the large degree of analytic flexibility in data analysis that can lead to substantially different conclusions based on the same data set. Thus, researchers have expressed their concerns that these researcher degrees of freedom might facilitate bias and can lead to claims that do not stand the test of time. Even greater flexibility is to be expected in fields in which the primary data lend themselves to a variety of possible operationalizations. The multidimensional, temporally extended nature of speech constitutes an ideal testing ground for assessing the variability in analytic approaches, which derives not only from aspects of statistical modeling but also from decisions regarding the quantification of the measured behavior. In this study, we gave the same speech-production data set to 46 teams of researchers and asked them to answer the same research question, resulting in substantial variability in reported effect sizes and their interpretation. Using Bayesian meta-analytic tools, we further found little to no evidence that the observed variability can be explained by analysts’ prior beliefs, expertise, or the perceived quality of their analyses. In light of this idiosyncratic variability, we recommend that researchers more transparently share details of their analysis, strengthen the link between theoretical construct and quantitative system, and calibrate their (un)certainty in their conclusions

    Multidimensional signals and analytic flexibility: Estimating degrees of freedom in human speech analyses

    Get PDF
    Recent empirical studies have highlighted the large degree of analytic flexibility in data analysis which can lead to substantially different conclusions based on the same data set. Thus, researchers have expressed their concerns that these researcher degrees of freedom might facilitate bias and can lead to claims that do not stand the test of time. Even greater flexibility is to be expected in fields in which the primary data lend themselves to a variety of possible operationalizations. The multidimensional, temporally extended nature of speech constitutes an ideal testing ground for assessing the variability in analytic approaches, which derives not only from aspects of statistical modeling, but also from decisions regarding the quantification of the measured behavior. In the present study, we gave the same speech production data set to 46 teams of researchers and asked them to answer the same research question, resulting insubstantial variability in reported effect sizes and their interpretation. Using Bayesian meta-analytic tools, we further find little to no evidence that the observed variability can be explained by analysts’ prior beliefs, expertise or the perceived quality of their analyses. In light of this idiosyncratic variability, we recommend that researchers more transparently share details of their analysis, strengthen the link between theoretical construct and quantitative system and calibrate their (un)certainty in their conclusions
    corecore