69 research outputs found

    Solving the Task Variant Allocation Problem in Distributed Robotics

    Get PDF
    We consider the problem of assigning software processes (or tasks) to hardware processors in distributed robotics environments. We introduce the notion of a task variant, which supports the adaptation of software to specific hardware configurations. Task variants facilitate the trade-off of functional quality versus the requisite capacity and type of target execution processors. We formalise the problem of assigning task variants to processors as a mathematical model that incorporates typical constraints found in robotics applications; the model is a constrained form of a multi-objective, multi-dimensional, multiple-choice knapsack problem. We propose and evaluate three different solution methods to the problem: constraint programming, a constructive greedy heuristic and a local search metaheuristic. Furthermore, we demonstrate the use of task variants in a real instance of a distributed interactive multi-agent navigation system, showing that our best solution method (constraint programming) improves the system’s quality of service, as compared to the local search metaheuristic, the greedy heuristic and a randomised solution, by an average of 16, 31 and 56% respectively

    Exploring Web-Based University Policy Statements on Plagiarism by Research-Intensive Higher Education Institutions

    Get PDF
    Plagiarism may distress universities in the US, but there is little agreement as to exactly what constitutes plagiarism. While there is ample research on plagiarism, there is scant literature on the content of university policies regarding it. Using a systematic sample, we qualitatively analyzed 20 Carnegie-classified universities that are “Very High in Research.” This included 15 public state universities and five high-profile private universities. We uncovered highly varied and even contradictory policies at these institutions. Notable policy variations existed for verbatim plagiarism, intentional plagiarism and unauthorized student collaboration at the studied institutions. We conclude by advising that the American Association of University Professors (AAUP), the American Association of Colleges and Universities (AACU) and others confer and come to accord on the disposition of these issues

    Deep Brain Stimulation of Nucleus Accumbens Region in Alcoholism Affects Reward Processing

    Get PDF
    The influence of bilateral deep brain stimulation (DBS) of the nucleus nucleus (NAcc) on the processing of reward in a gambling paradigm was investigated using H2[15O]-PET (positron emission tomography) in a 38-year-old man treated for severe alcohol addiction. Behavioral data analysis revealed a less risky, more careful choice behavior under active DBS compared to DBS switched off. PET showed win- and loss-related activations in the paracingulate cortex, temporal poles, precuneus and hippocampus under active DBS, brain areas that have been implicated in action monitoring and behavioral control. Except for the temporal pole these activations were not seen when DBS was deactivated. These findings suggest that DBS of the NAcc may act partially by improving behavioral control

    Affective neuroscience of pleasure: reward in humans and animals

    Full text link

    Deflection of Turbofan Exhaust Streams for Enhanced Engine/Nacelle Integration

    No full text

    Analysing Real-Time Communications: Controller Area Network (CAN)

    No full text
    The increasing use of communication networks in time critical applications presents engineers with fundamental problems with the determination of response times of communicating distributed processes. Although there has been some work on the analysis of communication protocols, most of this is for idealised networks. Experience with single processor scheduling analysis has shown that models which abstract away from implementation details are at best very pessimistic and at worst lead to unschedulable system being deemed schedulable. In this paper, we derive idealised scheduling analysis for the CAN network, and then study two actual interface chips to see how the analysis can be applied

    CFD Analysis of the X-29 Inlet at High Angle of Attack

    No full text

    The PEGASE project: precise and scalable temporal analysis for aerospace communication systems with Network Calculus

    Get PDF
    International audienceWith the increase of critical data exchanges in embedded real-time systems, the computation of tight upper bounds on network traversal times is becoming a crucial industrial need especially in safety critical systems. To address this need, the French project PEGASE grouping academics and industrial partners from the aerospace field has been undertaken to improve some key aspects of the Network Calculus and its implementation
    • 

    corecore