622 research outputs found
Oscillatory dynamics in a model of vascular tumour growth -- implications for chemotherapy
Background\ud
\ud
Investigations of solid tumours suggest that vessel occlusion may occur when increased pressure from the tumour mass is exerted on the vessel walls. Since immature vessels are frequently found in tumours and may be particularly sensitive, such occlusion may impair tumour blood flow and have a negative impact on therapeutic outcome. In order to study the effects that occlusion may have on tumour growth patterns and therapeutic response, in this paper we develop and investigate a continuum model of vascular tumour growth.\ud
Results\ud
\ud
By analysing a spatially uniform submodel, we identify regions of parameter space in which the combination of tumour cell proliferation and vessel occlusion give rise to sustained temporal oscillations in the tumour cell population and in the vessel density. Alternatively, if the vessels are assumed to be less prone to collapse, stable steady state solutions are observed. When spatial effects are considered, the pattern of tumour invasion depends on the dynamics of the spatially uniform submodel. If the submodel predicts a stable steady state, then steady travelling waves are observed in the full model, and the system evolves to the same stable steady state behind the invading front. When the submodel yields oscillatory behaviour, the full model produces periodic travelling waves. The stability of the waves (which can be predicted by approximating the system as one of λ-ω type) dictates whether the waves develop into regular or irregular spatio-temporal oscillations. Simulations of chemotherapy reveal that treatment outcome depends crucially on the underlying tumour growth dynamics. In particular, if the dynamics are oscillatory, then therapeutic efficacy is difficult to assess since the fluctuations in the size of the tumour cell population are enhanced, compared to untreated controls.\ud
Conclusions\ud
\ud
We have developed a mathematical model of vascular tumour growth formulated as a system of partial differential equations (PDEs). Employing a combination of numerical and analytical techniques, we demonstrate how the spatio-temporal dynamics of the untreated tumour may influence its response to chemotherapy.\ud
Reviewers\ud
\ud
This manuscript was reviewed by Professor Zvia Agur and Professor Marek Kimmel
Recommended from our members
Long-term changes in thermospheric composition inferred from a spectral analysis of ionospheric F-region data
A study of ionospheric data recorded at Slough/Chilton, UK, from 1935 to 2012, has revealed longterm changes in the relative strength of the annual and semiannual variability in the ionospheric F2 layer critical frequencies. Comparing these results with data from the southern hemisphere station at Stanley in the Falkland Islands between 1945 and 2012 reveals a trend that appears to be anti-correlated with that at Chilton. The behaviour of foF2 is a function of thermospheric composition and so we argue that the observed long-term changes are driven by composition change. The ionospheric trends share some of their larger features with the trend in the variability of the aa geomagnetic index. Changes to the semi-annual/annual ratio in the Slough/Chilton and Stanley data may therefore be attributable to the variability in geomagnetic activity which controls the average latitudinal extent of the auroral ovals and subsequent thermospheric circulation patterns. Changes in ionospheric composition or thermospheric wind patterns are known to influence the height of the F2 layer at a given location. Long-term changes to the height of the F2 layer have been used to infer an ionospheric response to greenhouse warming. We suggest that our observations may influence such measurements and since the results appear to be dependent on geomagnetic longitude, this could explain why the long-term drifts observed in F2 layer height differ between locations
State-Insensitive Cooling and Trapping of Single Atoms in an Optical Cavity
Single Cesium atoms are cooled and trapped inside a small optical cavity by
way of a novel far-off-resonance dipole-force trap (FORT), with observed
lifetimes of 2 to 3 seconds. Trapped atoms are observed continuously via
transmission of a strongly coupled probe beam, with individual events lasting ~
1 s. The loss of successive atoms from the trap N = 3 -> 2 -> 1 -> 0 is thereby
monitored in real time. Trapping, cooling, and interactions with strong
coupling are enabled by the FORT potential, for which the center-of-mass motion
is only weakly dependent on the atom's internal state.Comment: 5 pages, 4 figures Revised version to appear in Phys. Rev. Let
Strongly enhanced inelastic collisions in a Bose-Einstein condensate near Feshbach resonances
The properties of Bose-Einstein condensed gases can be strongly altered by
tuning the external magnetic field near a Feshbach resonance. Feshbach
resonances affect elastic collisions and lead to the observed modification of
the scattering length. However, as we report here, this is accompanied by a
strong increase in the rate of inelastic collisions. The observed three-body
loss rate in a sodium Bose-Einstein condensation increased when the scattering
length was tuned to both larger or smaller values than the off-resonant value.
This observation and the maximum measured increase of the loss rate by several
orders of magnitude are not accounted for by theoretical treatments. The strong
losses impose severe limitations for using Feshbach resonances to tune the
properties of Bose-Einstein condensates. A new Feshbach resonance in sodium at
1195 G was observed.Comment: 4 pages, 3 figure
Modulational instability of spinor condensates
We demonstrate, analytically and numerically, that the ferromagnetic phase of
the spinor Bose-Einstein condenstate may experience modulational instability of
the ground state leading to a fragmentation of the spin domains. Together with
other nonlinear effects in the atomic optics of ultra-cold gases (such as
coherent photoassociation and four-wave mixing) this effect provides one more
analogy between coherent matter waves and light waves in nonlinear optics.Comment: 4 pages, 4 figures. Accepted for Phys. Rev. A Rapid Communication
Exact Eigenstates and Magnetic Response of Spin-1 and Spin-2 Vectorial Bose-Einstein Condensates
The exact eigenspectra and eigenstates of spin-1 and spin-2 vectorial
Bose-Einstein condensates (BECs) are found, and their response to a weak
magnetic field is studied and compared with their mean-field counterparts.
Whereas mean-field theory predicts the vanishing population of the zero
magnetic-quantum-number component of a spin-1 antiferromagnetic BEC, the
component is found to become populated as the magnetic field decreases. The
spin-2 BEC exhibits an even richer magnetic response due to quantum correlation
between 3 bosons.Comment: 5 pages, no figures. LaTeX20
Generalized spin squeezing inequalities in qubit systems: theory and experiment
We present detailed derivations, various improvements and application to
concrete experimental data of spin squeezing inequalities formulated recently
by some of us [Phys. Rev. Lett. {\bf 95}, 120502 (2005)]. These inequalities
generalize the concept of the spin squeezing parameter, and provide necessary
and sufficient conditions for genuine 2-, or 3- qubit entanglement for
symmetric states, and sufficient entanglement condition for general -qubit
states. We apply our method to theoretical study of Dicke states, and, in
particular, to -states of qubits. Then, we analyze the recently
experimentally generated 7- and 8-ion -states [Nature {\bf 438}, 643
(2005)]. We also present some novel details concerning this experiment.
Finally, we improve criteria for detection of genuine tripartite entanglement
based on entanglement witnesses.Comment: Final versio
- …