2,034 research outputs found

    SN1991bg-like supernovae are a compelling source of most Galactic antimatter

    Full text link
    The Milky Way Galaxy glows with the soft gamma ray emission resulting from the annihilation of ∼5×1043\sim 5 \times 10^{43} electron-positron pairs every second. The origin of this vast quantity of antimatter and the peculiar morphology of the 511keV gamma ray line resulting from this annihilation have been the subject of debate for almost half a century. Most obvious positron sources are associated with star forming regions and cannot explain the rate of positron annihilation in the Galactic bulge, which last saw star formation some 10 Gyr10\,\mathrm{Gyr} ago, or else violate stringent constraints on the positron injection energy. Radioactive decay of elements formed in core collapse supernovae (CCSNe) and normal Type Ia supernovae (SNe Ia) could supply positrons matching the injection energy constraints but the distribution of such potential sources does not replicate the required morphology. We show that a single class of peculiar thermonuclear supernova - SN1991bg-like supernovae (SNe 91bg) - can supply the number and distribution of positrons we see annihilating in the Galaxy through the decay of 44^{44}Ti synthesised in these events. Such 44^{44}Ti production simultaneously addresses the observed abundance of 44^{44}Ca, the 44^{44}Ti decay product, in solar system material.Comment: Accepted for publication in Proceedings of IAU Symposium 322: The Multimessenger Astrophysics of the Galactic Center 4 page

    Solidification of liquid metal drops during impact

    Get PDF
    Hot liquid metal drops impacting onto a cold substrate solidify during their subsequent spreading. Here we experimentally study the influence of solidification on the outcome of an impact event. Liquid tin drops are impacted onto sapphire substrates of varying temperature. The impact is visualised both from the side and from below, which provides a unique view on the solidification process. During spreading an intriguing pattern of radial ligaments rapidly solidifies from the centre of the drop. This pattern determines the late-time morphology of the splat. A quantitative analysis of the drop spreading and ligament formation is supported by scaling arguments. Finally, a phase diagram for drop bouncing, deposition and splashing as a function of substrate temperature and impact velocity is provided

    Linear-Matrix-Inequality-Based Solution to Wahba’s Problem

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140644/1/1.g000132.pd

    Temperature dependent transport characteristics of graphene/n-Si diodes

    Get PDF
    Realizing an optimal Schottky interface of graphene on Si is challenging, as the electrical transport strongly depends on the graphene quality and the fabrication processes. Such interfaces are of increasing research interest for integration in diverse electronic devices as they are thermally and chemically stable in all environments, unlike standard metal/semiconductor interfaces. We fabricate such interfaces with n-type Si at ambient conditions and find their electrical characteristics to be highly rectifying, with minimal reverse leakage current (<<10−10^{-10} A) and rectification of more than 10610^6. We extract Schottky barrier height of 0.69 eV for the exfoliated graphene and 0.83 eV for the CVD graphene devices at room temperature. The temperature dependent electrical characteristics suggest the influence of inhomogeneities at the graphene/n-Si interface. A quantitative analysis of the inhomogeneity in Schottky barrier heights is presented using the potential fluctuation model proposed by Werner and G\"{u}ttler.Comment: 5 pages, 5 figure

    SN1991bg-like supernovae are associated with old stellar populations

    Full text link
    SN1991bg-like supernovae are a distinct subclass of thermonuclear supernovae (SNe Ia). Their spectral and photometric peculiarities indicate their progenitors and explosion mechanism differ from `normal' SNe Ia. One method of determining information about supernova progenitors we cannot directly observe is to observe the stellar population adjacent to the apparent supernova explosion site to infer the distribution of stellar population ages and metallicities. We obtain integral field observations and analyse the spectra extracted from regions of projected radius ∼ kpc\sim\,\mathrm{kpc} about the apparent SN explosion site for 11 91bg-like SNe in both early- and late-type galaxies. We utilize full-spectrum spectral fitting to determine the ages and metallicities of the stellar population within the aperture. We find that the majority of the stellar populations that hosted 91bg-like supernovae have little recent star formation. The ages of the stellar populations suggest that that 91bg-like SN progenitors explode after delay times of >6 Gyr>6\,\mathrm{Gyr}, much longer than the typical delay time of normal SNe Ia, which peaks at ∼1 Gyr\sim 1\,\mathrm{Gyr}.Comment: 12 pages, 3 figures, 3 tables, submitted to Publications of the Astronomical Society of Australi
    • …
    corecore