17,007 research outputs found
Processing multiple non-adjacent dependencies: evidence from sequence learning
Processing non-adjacent dependencies is considered to be one of the hallmarks of human language. Assuming that sequence-learning tasks provide a useful way to tap natural-language-processing mechanisms, we cross-modally combined serial reaction time and artificial-grammar learning paradigms to investigate the processing of multiple nested (A(1)A(2)A(3)B(3)B(2)B(1)) and crossed dependencies (A(1)A(2)A(3)B(1)B(2)B(3)), containing either three or two dependencies. Both reaction times and prediction errors highlighted problems with processing the middle dependency in nested structures (A(1)A(2)A(3)B(3-)B(1)), reminiscent of the 'missing-verb effect' observed in English and French, but not with crossed structures (A(1)A(2)A(3)B(1-)B(3)). Prior linguistic experience did not play a major role: native speakers of German and Dutch-which permit nested and crossed dependencies, respectively-showed a similar pattern of results for sequences with three dependencies. As for sequences with two dependencies, reaction times and prediction errors were similar for both nested and crossed dependencies. The results suggest that constraints on the processing of multiple non-adjacent dependencies are determined by the specific ordering of the non-adjacent dependencies (i.e. nested or crossed), as well as the number of non-adjacent dependencies to be resolved (i. e. two or three). Furthermore, these constraints may not be specific to language but instead derive from limitations on structured sequence learning.Netherlands Organisation of Scientific Research (NWO) [446-08-014]; Max Planck Institute for Psycholinguistics; Donders Institute for Brain, Cognition and Behaviour; Fundacao para a Ciencia e Tecnologia (IBB/CBME, LA, FEDER/POCI) [PTDC/PSI-PCO/110734/2009]; Stockholm Brain Institute; Vetenskapsradet; Swedish Dyslexia Foundation; Hedlunds Stiftelse; Stockholm County Council (ALF, FoUU)info:eu-repo/semantics/publishedVersio
The evolved circumbinary disk of AC Her: a radiative transfer, interferometric and mineralogical study
We aim to constrain the structure of the circumstellar material around the
post-AGB binary and RV Tauri pulsator AC Her. We want to constrain the spatial
distribution of the amorphous as well as of the crystalline dust. We present
very high-quality mid-IR interferometric data that were obtained with
MIDI/VLTI. We analyse the MIDI data and the full SED, using the MCMax radiative
transfer code, to find a good structure model of AC Her's circumbinary disk. We
include a grain size distribution and midplane settling of dust
self-consistently. The spatial distribution of crystalline forsterite in the
disk is investigated with the mid-IR features, the 69~m band and the
11.3~m signatures in the interferometric data. All the data are well
fitted. The inclination and position angle of the disk are well determined at
i=50+-8 and PA=305+-10. We firmly establish that the inner disk radius is about
an order of magnitude larger than the dust sublimation radius. Significant
grain growth has occurred, with mm-sized grains being settled to the midplane
of the disk. A large dust mass is needed to fit the sub-mm fluxes. By assuming
{\alpha}=0.01, a good fit is obtained with a small grain size power law index
of 3.25, combined with a small gas/dust ratio <10. The resulting gas mass is
compatible with recent estimates employing direct gas diagnostics. The spatial
distribution of the forsterite is different from the amorphous dust, as more
warm forsterite is needed in the surface layers of the inner disk. The disk in
AC Her is very evolved, with its small gas/dust ratio and large inner hole.
Mid-IR interferometry offers unique constraints, complementary to mid-IR
features, for studying the mineralogy in disks. A better uv coverage is needed
to constrain in detail the distribution of the crystalline forsterite in AC
Her, but we find strong similarities with the protoplanetary disk HD100546.Comment: update with final version published in A&
Nuclear medium effects in -nucleus deep inelastic scattering
We study the nuclear medium effects in the weak structure functions
and in the deep inelastic neutrino/antineutrino
reactions in nuclei.
We use a theoretical model for the nuclear spectral functions which
incorporates the conventional nuclear effects, such as Fermi motion, binding
and nucleon correlations.
We also consider the pion and rho meson cloud contributions calculated from a
microscopic model for meson-nucleus self-energies. The calculations have been
performed using relativistic nuclear spectral functions which include nucleon
correlations. Our results are compared with the experimental data of NuTeV and
CDHSW.Comment: 24 pages, 14 figure
Dynamic control of selectivity in the ubiquitination pathway revealed by an ASP to GLU substitution in an intra-molecular salt-bridge network
Ubiquitination relies on a subtle balance between selectivity and promiscuity achieved through specific interactions between ubiquitin-conjugating enzymes (E2s) and ubiquitin ligases (E3s). Here, we report how a single aspartic to glutamic acid substitution acts as a dynamic switch to tip the selectivity balance of human E2s for interaction toward E3 RING-finger domains. By combining molecular dynamic simulations, experimental yeast-two-hybrid screen of E2-E3 (RING) interactions and mutagenesis, we reveal how the dynamics of an internal salt-bridge network at the rim of the E2-E3 interaction surface controls the balance between an “open”, binding competent, and a “closed”, binding incompetent state. The molecular dynamic simulations shed light on the fine mechanism of this molecular switch and allowed us to identify its components, namely an aspartate/glutamate pair, a lysine acting as the central switch and a remote aspartate. Perturbations of single residues in this network, both inside and outside the interaction surface, are sufficient to switch the global E2 interaction selectivity as demonstrated experimentally. Taken together, our results indicate a new mechanism to control E2-E3 interaction selectivity at an atomic level, highlighting how minimal changes in amino acid side-chain affecting the dynamics of intramolecular salt-bridges can be crucial for protein-protein interactions. These findings indicate that the widely accepted sequence-structure-function paradigm should be extended to sequence-structure-dynamics-function relationship and open new possibilities for control and fine-tuning of protein interaction selectivity
Pair Correlations, Short Range Order and Dispersive Excitations in the Quasi-Kagome Quantum Magnet Volborthite
We present spatial and dynamic information on the s=1/2 distorted kagome
antiferromagnet volborthite, Cu3V2O7(OD)2.2D2O, obtained by polarized and
inelastic neutron scattering. The instantaneous structure factor, S(Q), is
dominated by nearest neighbor pair correlations, with short range order at wave
vectors Q1=0.65(3) {\AA}^-1 and Q2=1.15(5) {\AA}^-1 emerging below 5 K. The
excitation spectrum, S(Q,{\omega}), reveals two steep branches dispersing from
Q1 and Q2, and a flat mode at {\omega}=5.0(2) meV. The results allow us to
identify the cross-over at T*=1 K in 51V NMR and specific heat measurements as
the build-up of correlations at Q_1. We compare our data to theoretical models
proposed for volborthite, and demonstrate that the excitation spectrum can be
explained by spin-wave-like excitations with anisotropic exchange parameters,
as also suggested by recent local density calculations.Comment: Rewritten article resubmitted to Phys. Rev. Lett. 021
Quantum integrability of quadratic Killing tensors
Quantum integrability of classical integrable systems given by quadratic
Killing tensors on curved configuration spaces is investigated. It is proven
that, using a "minimal" quantization scheme, quantum integrability is insured
for a large class of classic examples.Comment: LaTeX 2e, no figure, 35 p., references added, minor modifications. To
appear in the J. Math. Phy
A Suzuki Coupling Based Route to 2,2'-Bis(2-indenyl)biphenyl Derivatives
Because of the promising performance in olefin polymerization of 2,2'-bis(2-indenyldiyl)biphenyl zirconium dichloride, we developed a new and broadly applicable route to 2,2'-bis(2-indenyl)biphenyl derivatives. Reaction of the known 2,2'-diiodobiphenyl with the new 2-indenyl boronic acid did not result in the desired 2,2'-bis(2-indenyl)biphenyl (10); instead an isomer thereof, (spiro-1,1-(2,2'-biphenyl)-2-(2-indenyl)indane), was obtained. It was found that compound 10 could be made via a palladium-catalyzed reaction of 2,2-biphenyldiboronic acid with 2-bromoindene under standard Suzuki reaction conditions. However, the yield of this reaction was low at low palladium catalyst loadings, due to a competitive hydrolysis reaction of 2,2-biphenyldiboronic acid. HTE techniques were used to find an economically viable protocol. Thus, use of the commercially available 1.0 molar solution of (n-Bu)4NOH in methanol with cosolvent toluene led to precipitation of the pure product in a fast and clean reaction, using only 0.7 mol % (0.35 mol % per C-C) of the expensive palladium catalyst.
Molecular Line Profile Fitting with Analytic Radiative Transfer Models
We present a study of analytic models of starless cores whose line profiles
have ``infall asymmetry,'' or blue-skewed shapes indicative of contracting
motions. We compare the ability of two types of analytical radiative transfer
models to reproduce the line profiles and infall speeds of centrally condensed
starless cores whose infall speeds are spatially constant and range between 0
and 0.2 km s-1. The model line profiles of HCO+ (J=1-0) and HCO+ (J=3-2) are
produced by a self-consistent Monte Carlo radiative transfer code. The analytic
models assume that the excitation temperature in the front of the cloud is
either constant (``two-layer'' model) or increases inward as a linear function
of optical depth (``hill'' model). Each analytic model is matched to the line
profile by rapid least-squares fitting.
The blue-asymmetric line profiles with two peaks, or with a blue shifted peak
and a red shifted shoulder, can be well fit by the ``HILL5'' model (a five
parameter version of the hill model), with an RMS error of 0.02 km s-1. A peak
signal to noise ratio of at least 30 in the molecular line observations is
required for performing these analytic radiative transfer fits to the line
profiles.Comment: 48 pages, 20 figures, accepted for publication in Ap
The problematically short superwind of OH/IR stars - Probing the outflow with the 69 {\mu}m spectral band of forsterite
Spectra of OH/IR stars show prominent spectral bands of crystalline olivine
(MgFeSiO). To learn more about the timescale of the
outflows of OH/IR stars, we study the spectral band of crystalline olivine at
69 {\mu}m. The 69 {\mu}m band is of interest because its width and peak
wavelength position are sensitive to the grain temperature and to the exact
composition of the crystalline olivine. With Herschel/PACS, we observed the 69
{\mu}m band in the outflow of 14 OH/IR stars. By comparing the crystalline
olivine features of our sample with those of model spectra, we determined the
size of the outflow and its crystalline olivine abundance.
The temperature indicated by the observed 69 {\mu}m bands can only be
reproduced by models with a geometrically compact superwind
( 2500 AU = 1400 R).This means that the superwind
started less than 1200 years ago (assuming an outflow velocity of 10 km/s). The
small amount of mass lost in one superwind and the high progenitor mass of the
OH/IR stars introduce a mass loss and thus evolutionary problem for these
objects, which has not yet been understood.Comment: Accepted by A&
- …