334 research outputs found
Exact sampling from non-attractive distributions using summary states
Propp and Wilson's method of coupling from the past allows one to efficiently
generate exact samples from attractive statistical distributions (e.g., the
ferromagnetic Ising model). This method may be generalized to non-attractive
distributions by the use of summary states, as first described by Huber. Using
this method, we present exact samples from a frustrated antiferromagnetic
triangular Ising model and the antiferromagnetic q=3 Potts model. We discuss
the advantages and limitations of the method of summary states for practical
sampling, paying particular attention to the slowing down of the algorithm at
low temperature. In particular, we show that such a slowing down can occur in
the absence of a physical phase transition.Comment: 5 pages, 6 EPS figures, REVTeX; additional information at
http://wol.ra.phy.cam.ac.uk/mackay/exac
Oriented Percolation in One-Dimensional 1/|x-y|^2 Percolation Models
We consider independent edge percolation models on Z, with edge occupation
probabilities p_ = p if |x-y| = 1, 1 - exp{- beta / |x-y|^2} otherwise. We
prove that oriented percolation occurs when beta > 1 provided p is chosen
sufficiently close to 1, answering a question posed in [Commun. Math. Phys.
104, 547 (1986)]. The proof is based on multi-scale analysis.Comment: 19 pages, 2 figures. See also Commentary on J. Stat. Phys. 150,
804-805 (2013), DOI 10.1007/s10955-013-0702-
The O(n) model on the annulus
We use Coulomb gas methods to propose an explicit form for the scaling limit
of the partition function of the critical O(n) model on an annulus, with free
boundary conditions, as a function of its modulus. This correctly takes into
account the magnetic charge asymmetry and the decoupling of the null states. It
agrees with an earlier conjecture based on Bethe ansatz and quantum group
symmetry, and with all known results for special values of n. It gives new
formulae for percolation (the probability that a cluster connects the two
opposite boundaries) and for self-avoiding loops (the partition function for a
single loop wrapping non-trivially around the annulus.) The limit n->0 also
gives explicit examples of partition functions in logarithmic conformal field
theory.Comment: 20 pp. v.2: important references added to earlier work, minor typos
correcte
Critical slowing down in polynomial time algorithms
Combinatorial optimization algorithms which compute exact ground state
configurations in disordered magnets are seen to exhibit critical slowing down
at zero temperature phase transitions. Using arguments based on the physical
picture of the model, including vanishing stiffness on scales beyond the
correlation length and the ground state degeneracy, the number of operations
carried out by one such algorithm, the push-relabel algorithm for the random
field Ising model, can be estimated. Some scaling can also be predicted for the
2D spin glass.Comment: 4 pp., 3 fig
Correlation inequalities for classical and quantum XY models
We review correlation inequalities of truncated functions for the classical
and quantum XY models. A consequence is that the critical temperature of the XY
model is necessarily smaller than that of the Ising model, in both the
classical and quantum cases. We also discuss an explicit lower bound on the
critical temperature of the quantum XY model.Comment: 13 pages. Submitted to the volume "Advances in Quantum Mechanics:
contemporary trends and open problems" of the INdAM-Springer series,
proceedings of the INdAM meeting "Contemporary Trends in the Mathematics of
Quantum Mechanics" (4-8 July 2016) organised by G. Dell'Antonio and A.
Michelangel
Invaded cluster algorithm for equilibrium critical points
A new cluster algorithm based on invasion percolation is described. The
algorithm samples the critical point of a spin system without a priori
knowledge of the critical temperature and provides an efficient way to
determine the critical temperature and other observables in the critical
region. The method is illustrated for the two- and three-dimensional Ising
models. The algorithm equilibrates spin configurations much faster than the
closely related Swendsen-Wang algorithm.Comment: 13 pages RevTex and 4 Postscript figures. Submitted to Phys. Rev.
Lett. Replacement corrects problem in printing figure
Percolation properties of the 2D Heisenberg model
We analyze the percolation properties of certain clusters defined on
configurations of the 2--dimensional Heisenberg model. We find that, given any
direction \vec{n} in O(3) space, the spins almost perpendicular to \vec{n} form
a percolating cluster. This result gives indications of how the model can avoid
a previously conjectured Kosterlitz-Thouless phase transition at finite
temperature T.Comment: 4 pages, 3 eps figures. Revised version (more clear abstract, some
new references
Phase coexistence of gradient Gibbs states
We consider the (scalar) gradient fields --with denoting
the nearest-neighbor edges in --that are distributed according to the
Gibbs measure proportional to \texte^{-\beta H(\eta)}\nu(\textd\eta). Here
is the Hamiltonian, is a symmetric potential,
is the inverse temperature, and is the Lebesgue measure on the linear
space defined by imposing the loop condition
for each plaquette
in . For convex , Funaki and Spohn have shown that
ergodic infinite-volume Gibbs measures are characterized by their tilt. We
describe a mechanism by which the gradient Gibbs measures with non-convex
undergo a structural, order-disorder phase transition at some intermediate
value of inverse temperature . At the transition point, there are at
least two distinct gradient measures with zero tilt, i.e., .Comment: 3 figs, PTRF style files include
Dynamic Critical Behavior of the Swendsen-Wang Algorithm: The Two-Dimensional 3-State Potts Model Revisited
We have performed a high-precision Monte Carlo study of the dynamic critical
behavior of the Swendsen-Wang algorithm for the two-dimensional 3-state Potts
model. We find that the Li-Sokal bound ()
is almost but not quite sharp. The ratio seems to diverge
either as a small power () or as a logarithm.Comment: 35 pages including 3 figures. Self-unpacking file containing the
LaTeX file, the needed macros (epsf.sty, indent.sty, subeqnarray.sty, and
eqsection.sty) and the 3 Postscript figures. Revised version fixes a
normalization error in \xi (with many thanks to Wolfhard Janke for finding
the error!). To be published in J. Stat. Phys. 87, no. 1/2 (April 1997
Dynamic Critical Behavior of the Chayes-Machta Algorithm for the Random-Cluster Model. I. Two Dimensions
We study, via Monte Carlo simulation, the dynamic critical behavior of the
Chayes-Machta dynamics for the Fortuin-Kasteleyn random-cluster model, which
generalizes the Swendsen-Wang dynamics for the q-state Potts ferromagnet to
non-integer q \ge 1. We consider spatial dimension d=2 and 1.25 \le q \le 4 in
steps of 0.25, on lattices up to 1024^2, and obtain estimates for the dynamic
critical exponent z_{CM}. We present evidence that when 1 \le q \lesssim 1.95
the Ossola-Sokal conjecture z_{CM} \ge \beta/\nu is violated, though we also
present plausible fits compatible with this conjecture. We show that the
Li-Sokal bound z_{CM} \ge \alpha/\nu is close to being sharp over the entire
range 1 \le q \le 4, but is probably non-sharp by a power. As a byproduct of
our work, we also obtain evidence concerning the corrections to scaling in
static observables.Comment: LaTeX2e, 75 pages including 26 Postscript figure
- âŠ