80 research outputs found

    On the Optical Activity of Steroidal 5,7-Dienes

    Get PDF
    Circular dichroism (CD) data are reported of a series of 9,10- stereoisomeric steroidal 5,7-dienes. In general the effects in the longest wavelength transition (270-280 nm) are large (Mm" 10---30) and consignate with respect to the diene helicity rule. The magnitude of the CD appears to vary markedly with the substituent at C-3 and at C-17, and with solvent. In the case of the 9a,10p-H dienes, variation of solvent and temperature can affect even the sign of the Cotton effect. This is explained from a change of geometry of the diene ring: solvation, substitution and temperature can affect the average geometry of the ring including the values of the angle of twist of the diene (ef> (6-7». The relevance of the observed chiroptical data for the theoretical description of the optical activity in the So-+ Sl transition of homoannular cisoid dienes is discussed

    A Hermetic On-Cryostat Helium Source for Low Temperature Experiments

    Full text link
    We describe a helium source cell for use in cryogenic experiments that is hermetically sealed inin situsitu on the cold plate of a cryostat. The source cell is filled with helium gas at room temperature and subsequently sealed using a cold weld crimping tool before the cryostat is closed and cooled down. At low temperature the helium condenses and collects in a connected experimental volume, as monitored via the frequency response of a planar superconducting resonator device sensitive to small amounts of liquid helium. This on-cryostat helium source negates the use of a filling tube between the cryogenic volumes and room temperature, thereby preventing unwanted effects such as such as temperature instabilities that arise from the thermomechanical motion of helium within the system. This helium source can be used in experiments investigating the properties of quantum fluids or to better thermalize quantum devices.Comment: 5 pages, 3 figure

    Machine learning based natural language processing of radiology reports in orthopaedic trauma

    Get PDF
    OBJECTIVES: To compare different Machine Learning (ML) Natural Language Processing (NLP) methods to classify radiology reports in orthopaedic trauma for the presence of injuries. Assessing NLP performance is a prerequisite for downstream tasks and therefore of importance from a clinical perspective (avoiding missed injuries, quality check, insight in diagnostic yield) as well as from a research perspective (identification of patient cohorts, annotation of radiographs). METHODS: Datasets of Dutch radiology reports of injured extremities (n = 2469, 33% fractures) and chest radiographs (n = 799, 20% pneumothorax) were collected in two different hospitals and labeled by radiologists and trauma surgeons for the presence or absence of injuries. NLP classification was applied and optimized by testing different preprocessing steps and different classifiers (Rule-based, ML, and Bidirectional Encoder Representations from Transformers (BERT)). Performance was assessed by F1-score, AUC, sensitivity, specificity and accuracy. RESULTS: The deep learning based BERT model outperforms all other classification methods which were assessed. The model achieved an F1-score of (95 ± 2)% and accuracy of (96 ± 1)% on a dataset of simple reports (n= 2469), and an F1 of (83 ± 7)% with accuracy (93 ± 2)% on a dataset of complex reports (n= 799). CONCLUSION: BERT NLP outperforms traditional ML and rule-base classifiers when applied to Dutch radiology reports in orthopaedic trauma

    A Call to Action for Bioengineers and Dental Professionals: Directives for the Future of TMJ Bioengineering

    Full text link

    The Influence of Mineralization on Intratrabecular Stress and Strain Distribution in Developing Trabecular Bone

    Get PDF
    The load-transfer pathway in trabecular bone is largely determined by its architecture. However, the influence of variations in mineralization is not known. The goal of this study was to examine the influence of inhomogeneously distributed degrees of mineralization (DMB) on intratrabecular stresses and strains. Cubic mandibular condylar bone specimens from fetal and newborn pigs were used. Finite element models were constructed, in which the element tissue moduli were scaled to the local DMB. Disregarding the observed distribution of mineralization was associated with an overestimation of average equivalent strain and underestimation of von Mises equivalent stress. From the surface of trabecular elements towards their core the strain decreased irrespective of tissue stiffness distribution. This indicates that the trabecular elements were bent during the compression experiment. Inhomogeneously distributed tissue stiffness resulted in a low stress at the surface that increased towards the core. In contrast, disregarding this tissue stiffness distribution resulted in high stress at the surface which decreased towards the core. It was concluded that the increased DMB, together with concurring alterations in architecture, during development leads to a structure which is able to resist increasing loads without an increase in average deformation, which may lead to damage

    The BMP Antagonist Follistatin-Like 1 Is Required for Skeletal and Lung Organogenesis

    Get PDF
    Follistatin-like 1 (Fstl1) is a secreted protein of the BMP inhibitor class. During development, expression of Fstl1 is already found in cleavage stage embryos and becomes gradually restricted to mesenchymal elements of most organs during subsequent development. Knock down experiments in chicken and zebrafish demonstrated a role as a BMP antagonist in early development. To investigate the role of Fstl1 during mouse development, a conditional Fstl1 KO allele as well as a Fstl1-GFP reporter mouse were created. KO mice die at birth from respiratory distress and show multiple defects in lung development. Also, skeletal development is affected. Endochondral bone development, limb patterning as well as patterning of the axial skeleton are perturbed in the absence of Fstl1. Taken together, these observations show that Fstl1 is a crucial regulator in BMP signalling during mouse development

    Functional Relationship between Skull Form and Feeding Mechanics in Sphenodon, and Implications for Diapsid Skull Development

    Get PDF
    The vertebrate skull evolved to protect the brain and sense organs, but with the appearance of jaws and associated forces there was a remarkable structural diversification. This suggests that the evolution of skull form may be linked to these forces, but an important area of debate is whether bone in the skull is minimised with respect to these forces, or whether skulls are mechanically “over-designed” and constrained by phylogeny and development. Mechanical analysis of diapsid reptile skulls could shed light on this longstanding debate. Compared to those of mammals, the skulls of many extant and extinct diapsids comprise an open framework of fenestrae (window-like openings) separated by bony struts (e.g., lizards, tuatara, dinosaurs and crocodiles), a cranial form thought to be strongly linked to feeding forces. We investigated this link by utilising the powerful engineering approach of multibody dynamics analysis to predict the physiological forces acting on the skull of the diapsid reptile Sphenodon. We then ran a series of structural finite element analyses to assess the correlation between bone strain and skull form. With comprehensive loading we found that the distribution of peak von Mises strains was particularly uniform throughout the skull, although specific regions were dominated by tensile strains while others were dominated by compressive strains. Our analyses suggest that the frame-like skulls of diapsid reptiles are probably optimally formed (mechanically ideal: sufficient strength with the minimal amount of bone) with respect to functional forces; they are efficient in terms of having minimal bone volume, minimal weight, and also minimal energy demands in maintenance
    • …
    corecore