59,469 research outputs found

    Development of an autonomous video rendezous and docking system

    Get PDF
    Video control systems using three flashing lights and two other types of docking aids were evaluated through computer simulation and other approaches. The three light system performed much better than the others. Its accuracy is affected little by tumbling of the target spacecraft, and in the simulations it was able to cope with attitude rates up to 20,000 degrees per hour about the docking axis. Its performance with rotation about other axes is determined primarily by the state estimation and goal setting portions of the control system, not by measurement accuracy. A suitable control system, and a computer program that can serve as the basis for the physical simulation are discussed

    The Infrared Nucleus of the Wolf-Rayet Galaxy Henize 2-10

    Get PDF
    We have obtained near-infrared images and mid-infrared spectra of the starburst core of the dwarf Wolf-Rayet galaxy He 2-10. We find that the infrared continuum and emission lines are concentrated in a flattened ellipse 3-4'' or 150 pc across which may show where a recent accretion event has triggered intense star formation. The ionizing radiation from this cluster has an effective temperature of 40,000 K, corresponding to 30M30M_\odot stars, and the starburst is 0.51.5×1070.5-1.5 \times 10^7 years old.Comment: 17 pages Latex, 7 postscript figures, 1 postscript table, accepted to A

    Ab-initio calculation of the Gilbert damping parameter via linear response formalism

    Get PDF
    A Kubo-Greenwood-like equation for the Gilbert damping parameter α\alpha is presented that is based on the linear response formalism. Its implementation using the fully relativistic Korringa-Kohn-Rostoker (KKR) band structure method in combination with Coherent Potential Approximation (CPA) alloy theory allows it to be applied to a wide range of situations. This is demonstrated with results obtained for the bcc alloy system Fex_xCo1x_{1-x} as well as for a series of alloys of permalloy with 5d transition metals. To account for the thermal displacements of atoms as a scattering mechanism, an alloy-analogy model is introduced. The corresponding calculations for Ni correctly describe the rapid change of α\alpha when small amounts of substitutional Cu are introduced

    Well-Posedness And Accuracy Of The Ensemble Kalman Filter In Discrete And Continuous Time

    Get PDF
    The ensemble Kalman filter (EnKF) is a method for combining a dynamical model with data in a sequential fashion. Despite its widespread use, there has been little analysis of its theoretical properties. Many of the algorithmic innovations associated with the filter, which are required to make a useable algorithm in practice, are derived in an ad hoc fashion. The aim of this paper is to initiate the development of a systematic analysis of the EnKF, in particular to do so in the small ensemble size limit. The perspective is to view the method as a state estimator, and not as an algorithm which approximates the true filtering distribution. The perturbed observation version of the algorithm is studied, without and with variance inflation. Without variance inflation well-posedness of the filter is established; with variance inflation accuracy of the filter, with resepct to the true signal underlying the data, is established. The algorithm is considered in discrete time, and also for a continuous time limit arising when observations are frequent and subject to large noise. The underlying dynamical model, and assumptions about it, is sufficiently general to include the Lorenz '63 and '96 models, together with the incompressible Navier-Stokes equation on a two-dimensional torus. The analysis is limited to the case of complete observation of the signal with additive white noise. Numerical results are presented for the Navier-Stokes equation on a two-dimensional torus for both complete and partial observations of the signal with additive white noise

    Flightweight radiantly and actively cooled panel: Thermal and structural performance

    Get PDF
    A 2- by 4-ft flightweight panel was subjected to thermal/structural tests representative of design flight conditions for a Mach 6.7 transport and to off-design conditions simulating flight maneuvers and cooling system failures. The panel utilized Rene 41 heat shields backed by a thin layer of insulation to radiate away most of the 12 Btu/ft2-sec incident heating. A solution of ethylene glycol in water circulating through tubes in an aluminum-honeycomb-sandwich panel absorbed the remainder of the incident heating (0.8 Btu/sq ft-sec). The panel successfully withstood (1) 46.7 hr of radiant heating which included 53 thermal cycles and 5000 cycles of uniaxial inplane loading of + or - 1200 lfb/in; (2) simulated 2g-maneuver heating conditions and simulated cooling system failures without excessive temperatures on the structural panel; and (3) the extensive thermal/structural tests and the aerothermal tests reported in NASA TP-1595 without significant damage to the structural panel, coolant leaks, or hot-gas ingress to the structural panel

    Interface enhancement of Gilbert damping from first-principles

    Get PDF
    The enhancement of Gilbert damping observed for Ni80Fe20 (Py) films in contact with the non-magnetic metals Cu, Pd, Ta and Pt, is quantitatively reproduced using first-principles scattering theory. The "spin-pumping" theory that qualitatively explains its dependence on the Py thickness is generalized to include a number of factors known to be important for spin transport through interfaces. Determining the parameters in this theory from first-principles shows that interface spin-flipping makes an essential contribution to the damping enhancement. Without it, a much shorter spin-flip diffusion length for Pt would be needed than the value we calculate independently

    State space collapse and diffusion approximation for a network operating under a fair bandwidth sharing policy

    Full text link
    We consider a connection-level model of Internet congestion control, introduced by Massouli\'{e} and Roberts [Telecommunication Systems 15 (2000) 185--201], that represents the randomly varying number of flows present in a network. Here, bandwidth is shared fairly among elastic document transfers according to a weighted α\alpha-fair bandwidth sharing policy introduced by Mo and Walrand [IEEE/ACM Transactions on Networking 8 (2000) 556--567] [α(0,)\alpha\in (0,\infty)]. Assuming Poisson arrivals and exponentially distributed document sizes, we focus on the heavy traffic regime in which the average load placed on each resource is approximately equal to its capacity. A fluid model (or functional law of large numbers approximation) for this stochastic model was derived and analyzed in a prior work [Ann. Appl. Probab. 14 (2004) 1055--1083] by two of the authors. Here, we use the long-time behavior of the solutions of the fluid model established in that paper to derive a property called multiplicative state space collapse, which, loosely speaking, shows that in diffusion scale, the flow count process for the stochastic model can be approximately recovered as a continuous lifting of the workload process.Comment: Published in at http://dx.doi.org/10.1214/08-AAP591 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Subsonic Longitudinal Performance Coefficient Extraction from Shuttle Flight Data: an Accuracy Assessment for Determination of Data Base Updates

    Get PDF
    Longitudinal performance comparisons between flight derived and predicted values are presented for the first five NASA Space Shuttle Columbia flights. Though subsonic comparisons are emphasized, comparisons during the transonic and low supersonic regions of flight are included. Computed air data information based on the remotely sensed atmospheric measurements as well as in situ Orbiter Air Data System (ADS) measurements were incorporated. Each air data source provides for comparisons versus the predicted values from the LaRC data base. Principally, L/D, C sub L, and C sub D, comparisons are presented, though some pitching moment results are included. Similarities in flight conditions and spacecraft configuration during the first five flights are discussed. Contributions from the various elements of the data base are presented and the overall differences observed between the flight and predicted values are discussed in terms of expected variations. A discussion on potential data base updates is presented based on the results from the five flights to date
    corecore