94 research outputs found
Sonoluminescing air bubbles rectify argon
The dynamics of single bubble sonoluminescence (SBSL) strongly depends on the
percentage of inert gas within the bubble. We propose a theory for this
dependence, based on a combination of principles from sonochemistry and
hydrodynamic stability. The nitrogen and oxygen dissociation and subsequent
reaction to water soluble gases implies that strongly forced air bubbles
eventually consist of pure argon. Thus it is the partial argon (or any other
inert gas) pressure which is relevant for stability. The theory provides
quantitative explanations for many aspects of SBSL.Comment: 4 page
Sonoluminescence as a QED vacuum effect. I: The Physical Scenario
Several years ago Schwinger proposed a physical mechanism for
sonoluminescence in terms of changes in the properties of the
quantum-electrodynamic (QED) vacuum state. This mechanism is most often phrased
in terms of changes in the Casimir Energy: changes in the distribution of
zero-point energies and has recently been the subject of considerable
controversy. The present paper further develops this quantum-vacuum approach to
sonoluminescence: We calculate Bogolubov coefficients relating the QED vacuum
states in the presence of a homogeneous medium of changing dielectric constant.
In this way we derive an estimate for the spectrum, number of photons, and
total energy emitted. We emphasize the importance of rapid spatio-temporal
changes in refractive indices, and the delicate sensitivity of the emitted
radiation to the precise dependence of the refractive index as a function of
wavenumber, pressure, temperature, and noble gas admixture. Although the
physics of the dynamical Casimir effect is a universal phenomenon of QED,
specific experimental features are encoded in the condensed matter physics
controlling the details of the refractive index. This calculation places rather
tight constraints on the possibility of using the dynamical Casimir effect as
an explanation for sonoluminescence, and we are hopeful that this scenario will
soon be amenable to direct experimental probes. In a companion paper we discuss
the technical complications due to finite-size effects, but for reasons of
clarity in this paper we confine attention to bulk effects.Comment: 25 pages, LaTeX 209, ReV-TeX 3.2, eight figures. Minor revisions:
Typos fixed, references updated, minor changes in numerical estimates, minor
changes in some figure
Investigation of transition frequencies of two acoustically coupled bubbles using a direct numerical simulation technique
The theoretical results regarding the ``transition frequencies'' of two
acoustically interacting bubbles have been verified numerically. The theory
provided by Ida [Phys. Lett. A 297 (2002) 210] predicted the existence of three
transition frequencies per bubble, each of which has the phase difference of
between a bubble's pulsation and the external sound field, while
previous theories predicted only two natural frequencies which cause such phase
shifts. Namely, two of the three transition frequencies correspond to the
natural frequencies, while the remaining does not. In a subsequent paper [M.
Ida, Phys. Rev. E 67 (2003) 056617], it was shown theoretically that transition
frequencies other than the natural frequencies may cause the sign reversal of
the secondary Bjerknes force acting between pulsating bubbles. In the present
study, we employ a direct numerical simulation technique that uses the
compressible Navier-Stokes equations with a surface-tension term as the
governing equations to investigate the transition frequencies of two coupled
bubbles by observing their pulsation amplitudes and directions of translational
motion, both of which change as the driving frequency changes. The numerical
results reproduce the recent theoretical predictions, validating the existence
of the transition frequencies not corresponding to the natural frequency.Comment: 18 pages, 8 figures, in pres
Mechanisms for Stable Sonoluminescence
A gas bubble trapped in water by an oscillating acoustic field is expected to
either shrink or grow on a diffusive timescale, depending on the forcing
strength and the bubble size. At high ambient gas concentration this has long
been observed in experiments. However, recent sonoluminescence experiments show
that in certain circumstances when the ambient gas concentration is low the
bubble can be stable for days. This paper presents mechanisms leading to
stability which predict parameter dependences in agreement with the
sonoluminescence experiments.Comment: 4 pages, 3 figures on request (2 as .ps files
Cell shape analysis of random tessellations based on Minkowski tensors
To which degree are shape indices of individual cells of a tessellation
characteristic for the stochastic process that generates them? Within the
context of stochastic geometry and the physics of disordered materials, this
corresponds to the question of relationships between different stochastic
models. In the context of image analysis of synthetic and biological materials,
this question is central to the problem of inferring information about
formation processes from spatial measurements of resulting random structures.
We address this question by a theory-based simulation study of shape indices
derived from Minkowski tensors for a variety of tessellation models. We focus
on the relationship between two indices: an isoperimetric ratio of the
empirical averages of cell volume and area and the cell elongation quantified
by eigenvalue ratios of interfacial Minkowski tensors. Simulation data for
these quantities, as well as for distributions thereof and for correlations of
cell shape and volume, are presented for Voronoi mosaics of the Poisson point
process, determinantal and permanental point processes, and Gibbs hard-core and
random sequential absorption processes as well as for Laguerre tessellations of
polydisperse spheres and STIT- and Poisson hyperplane tessellations. These data
are complemented by mechanically stable crystalline sphere and disordered
ellipsoid packings and area-minimising foam models. We find that shape indices
of individual cells are not sufficient to unambiguously identify the generating
process even amongst this limited set of processes. However, we identify
significant differences of the shape indices between many of these tessellation
models. Given a realization of a tessellation, these shape indices can narrow
the choice of possible generating processes, providing a powerful tool which
can be further strengthened by density-resolved volume-shape correlations.Comment: Chapter of the forthcoming book "Tensor Valuations and their
Applications in Stochastic Geometry and Imaging" in Lecture Notes in
Mathematics edited by Markus Kiderlen and Eva B. Vedel Jense
Comparative study of non-invasive force and stress inference methods in tissue
In the course of animal development, the shape of tissue emerges in part from
mechanical and biochemical interactions between cells. Measuring stress in
tissue is essential for studying morphogenesis and its physical constraints.
Experimental measurements of stress reported thus far have been invasive,
indirect, or local. One theoretical approach is force inference from cell
shapes and connectivity, which is non-invasive, can provide a space-time map of
stress and relies on prefactors. Here, to validate force- inference methods, we
performed a comparative study of them. Three force-inference methods, which
differ in their approach of treating indefiniteness in an inverse problem
between cell shapes and forces, were tested by using two artificial and two
experimental data sets. Our results using different datasets consistently
indicate that our Bayesian force inference, by which cell-junction tensions and
cell pressures are simultaneously estimated, performs best in terms of accuracy
and robustness. Moreover, by measuring the stress anisotropy and relaxation, we
cross-validated the force inference and the global annular ablation of tissue,
each of which relies on different prefactors. A practical choice of
force-inference methods in distinct systems of interest is discussed.Comment: 12 pages, 8 figures, EPJ E: Topical issue on "Physical constraints on
morphogenesis and evolution
Ultrasonic characterization of ultrasound contrast agents
The main constituent of an ultrasound contrast agent (UCA) is gas-filled microbubbles. An average UCA contains billions per ml. These microbubbles are excellent ultrasound scatterers due to their high compressibility. In an ultrasound field they act as resonant systems, resulting in harmonic energy in the backscattered ultrasound signal, such as energy at the subharmonic, ultraharmonic and higher harmonic frequencies. This harmonic energy is exploited for contrast enhanced imaging to discriminate the contrast agent from surrounding tissue. The amount of harmonic energy that the contrast agent bubbles generate depends on the bubble characteristics in combination with the ultrasound field applied. This paper summarizes different strategies to characterize the UCAs. These strategies can be divided into acoustic and optical methods, which focus on the linear or nonlinear responses of the contrast agent bubbles. In addition, the characteristics of individual bubbles can be determined or the bubbles can be examined when they are part of a population. Recently, especially optical methods have proven their value to study individual bubbles. This paper concludes by showing some examples of optically observed typical behavior of contrast bubbles in ultrasound fields
Computer Simulation of Cellular Patterning Within the Drosophila Pupal Eye
We present a computer simulation and associated experimental validation of assembly of glial-like support cells into the interweaving hexagonal lattice that spans the Drosophila pupal eye. This process of cell movements organizes the ommatidial array into a functional pattern. Unlike earlier simulations that focused on the arrangements of cells within individual ommatidia, here we examine the local movements that lead to large-scale organization of the emerging eye field. Simulations based on our experimental observations of cell adhesion, cell death, and cell movement successfully patterned a tracing of an emerging wild-type pupal eye. Surprisingly, altering cell adhesion had only a mild effect on patterning, contradicting our previous hypothesis that the patterning was primarily the result of preferential adhesion between IRM-class surface proteins. Instead, our simulations highlighted the importance of programmed cell death (PCD) as well as a previously unappreciated variable: the expansion of cells' apical surface areas, which promoted rearrangement of neighboring cells. We tested this prediction experimentally by preventing expansion in the apical area of individual cells: patterning was disrupted in a manner predicted by our simulations. Our work demonstrates the value of combining computer simulation with in vivo experiments to uncover novel mechanisms that are perpetuated throughout the eye field. It also demonstrates the utility of the Glazier–Graner–Hogeweg model (GGH) for modeling the links between local cellular interactions and emergent properties of developing epithelia as well as predicting unanticipated results in vivo
- …