15 research outputs found

    Thermodynamic picture of the glassy state

    Full text link
    A picture for thermodynamics of the glassy state is introduced. It assumes that one extra parameter, the effective temperature, is needed to describe the glassy state. This explains the classical paradoxes concerning the Ehrenfest relations and the Prigogine-Defay ratio. As a second part, the approach connects the response of macroscopic observables to a field change with their temporal fluctuations, and with the fluctuation-dissipation relation, in a generalized non-equilibrium way.Comment: Proceedings of the Conference "Unifying Concepts in Glass Physics", ICTP, Trieste, 15 - 18 September 199

    Ehrenfest relations at the glass transition: solution to an old paradox

    Full text link
    In order to find out whether there exists a thermodynamic description of the glass phase, the Ehrenfest relations along the glass transition line are reconsidered. It is explained that the one involving the compressibility is always satisfied, and that the one involving the specific heat is principally incorrect. Thermodynamical relations are presented for non-ergodic systems with a one-level tree in phase space. They are derived for a spin glass model, checked for other models, and expected to apply, e.g., to glass forming liquids. The second Ehrenfest relation gets a contribution from the configurational entropy.Comment: 4 pages revtex, to appear in Phys. Rev. Let

    Computer Simulations of Supercooled Liquids and Glasses

    Full text link
    After a brief introduction to the dynamics of supercooled liquids, we discuss some of the advantages and drawbacks of computer simulations of such systems. Subsequently we present the results of computer simulations in which the dynamics of a fragile glass former, a binary Lennard-Jones system, is compared to the one of a strong glass former, SiO_2. This comparison gives evidence that the reason for the different temperature dependence of these two types of glass formers lies in the transport mechanism for the particles in the vicinity of T_c, the critical temperature of mode-coupling theory. Whereas the one of the fragile glass former is described very well by the ideal version of mode-coupling theory, the one for the strong glass former is dominated by activated processes. In the last part of the article we review some simulations of glass formers in which the dynamics below the glass transition temperature was investigated. We show that such simulations might help to establish a connection between systems with self generated disorder (e.g. structural glasses) and quenched disorder (e.g. spin glasses).Comment: 37 pages of Latex, 11 figures, to appear as a Topical Review article in J. Phys.: Condens. Matte
    corecore