11,036 research outputs found

    Signatures of Resonant Super-Partner Production with Charged-Current Decays

    Full text link
    Hadron collider signatures of new physics are investigated in which a primary resonance is produced that decays to a secondary resonance by emitting a W-boson, with the secondary resonance decaying to two jets. This topology can arise in supersymmetric theories with R-parity violation where the lightest supersymmetric particles are either a pair of squarks, or a slepton - sneutrino pair. The resulting signal can have a cross section consistent with the Wjj observation reported by the CDF collaboration, while remaining consistent with earlier constraints. Other observables that can be used to confirm this scenario include a significant charge asymmetry in the same channel at the LHC. With strongly interacting resonances such as squarks, pair production topologies additionally give rise to 4 jet and WW + 4 jet signatures, each with two equal-mass dijet resonances within the 4 jets.Comment: Note added for recent developments concerning the Wjj final state. Version to appear in PRD. 21 pages, 12 figure

    Conductance and density of states as the Kramers-Kronig dispersion relation

    Full text link
    By applying the Kramers-Kronig dispersion relation to the transmission amplitude a direct connection of the conductance with the density of states is given in quantum scattering systems connected to two one-channel leads. Using this method we show that in the Fano resonance the peak position of the density of states is generally different from the position of the corresponding conductance peak, whereas in the Breit-Wigner resonance those peak positions coincide. The lineshapes of the density of states are well described by a Lorentz type in the both resonances. These results are verified by another approach using a specific form of the scattering matrix to describe scattering resonances.Comment: 9 pages, 4 figure

    Correlation and symmetry effects in transport through an artificial molecule

    Full text link
    Spectral weights and current-voltage characteristics of an artificial diatomic molecule are calculated, considering cases where the dots connected in series are in general different. The spectral weights allow us to understand the effects of correlations, their connection with selection rules for transport, and the role of excited states in the experimental conductance spectra of these coupled double dot systems (DDS). An extended Hubbard Hamiltonian with varying interdot tunneling strength is used as a model, incorporating quantum confinement in the DDS, interdot tunneling as well as intra- and interdot Coulomb interactions. We find that interdot tunneling values determine to a great extent the resulting eigenstates and corresponding spectral weights. Details of the state correlations strongly suppress most of the possible conduction channels, giving rise to effective selection rules for conductance through the molecule. Most states are found to make insignificant contributions to the total current for finite biases. We find also that the symmetry of the structure is reflected in the I-V characteristics, and is in qualitative agreement with experiment.Comment: 25 figure files - REVTEX - submitted to PR

    Kondo resonance effect on persistent currents through a quantum dot in a mesoscopic ring

    Full text link
    The persistent current through a quantum dot inserted in a mesoscopic ring of length L is studied. A cluster representing the dot and its vicinity is exactly diagonalized and embedded into the rest of the ring. The Kondo resonance provides a new channel for the current to flow. It is shown that due to scaling properties, the persistent current at the Kondo regime is enhanced relative to the current flowing either when the dot is at resonance or along a perfect ring of same length. In the Kondo regime the current scales as L−1/2L^{-1/2}, unlike the L−1L^{-1} scaling of a perfect ring. We discuss the possibility of detection of the Kondo effect by means of a persistent current measurement.Comment: 11 pages, 3 Postscript figure

    A Strategy for Finding Near Earth Objects with the SDSS Telescope

    Full text link
    We present a detailed observational strategy for finding Near Earth Objects (NEOs) with the Sloan Digital Sky Survey (SDSS) telescope. We investigate strategies in normal, unbinned mode as well as binning the CCDs 2x2 or 3x3, which affects the sky coverage rate and the limiting apparent magnitude. We present results from 1 month, 3 year and 10 year simulations of such surveys. For each cadence and binning mode, we evaluate the possibility of achieving the Spaceguard goal of detecting 90% of 1 km NEOs (absolute magnitude H <= 18 for an albedo of 0.1). We find that an unbinned survey is most effective at detecting H <= 20 NEOs in our sample. However, a 3x3 binned survey reaches the Spaceguard Goal after only seven years of operation. As the proposed large survey telescopes (PanStarss; LSST) are at least 5-10 years from operation, an SDSS NEO survey could make a significant contribution to the detection and photometric characterization of the NEO population.Comment: Accepted by AJ -- 12 pages, 11 figure

    Quantum Hall fluctuations and evidence for charging in the quantum Hall effect

    Full text link
    We find that mesoscopic conductance fluctuations in the quantum Hall regime in silicon MOSFETs display simple and striking patterns. The fluctuations fall into distinct groups which move along lines parallel to loci of integer filling factor in the gate voltage-magnetic field plane. Also, a relationship appears between the fluctuations on quantum Hall transitions and those found at low densities in zero magnetic field. These phenomena are most naturally attributed to charging effects. We argue that they are the first unambiguous manifestation of interactions in dc transport in the integer quantum Hall effect.Comment: 4 pages RevTeX including 4 postscript bitmapped figure

    Sufficient conditions for bang-bang control in Hilbert space

    Full text link
    Sufficient conditions for bang-bang and singular optimal control are established in the case of linear operator equations with cost functionals which are the sum of linear and quadratic terms, that is, Ax = u , J ( u )=( r,x )+β( x,x ), β>0. For example, if A is a bounded operator with a bounded inverse from a Hilbert space H into itself and the control set U is the unit ball in H , then an optimal control is bang-bang (has norm l) if 0⩽β1/2∥ A −1 * r ∥·∥ A ∥ 2 .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45225/1/10957_2004_Article_BF00928120.pd
    • …
    corecore