129 research outputs found
Recommended from our members
MATERIALS SCREENING METHODOLOGY FOR ADDITIVE MANUFACTURING IN BIOREACTOR TECHNOLOGY
Biofabrication is used to fabricate complex tissues/organs inspired by their native structures
using additive manufacturing (AM) techniques and bio-inks (biopolymers enriched with living
cells). Electroactive cells such as skeletal muscle function via electrical signals and therefore,
their optimum in vitro functionality requires electrical conductivity and electrical stimulations.
AM can be used to precisely fabricate a bioreactor for a dynamic culture of cells and
bioengineered tissues and electrical stimulation of them. In this study, we focused on a material
selection methodology for AM of bioreactors with selective electrical conductivity based on
Reuter [1].
The important material requirements for bioreactors are biocompatibility, chemical stability,
electrical conductivity, and the capability of being sterilized. However, there is no standardized
procedure for selecting materials, that are appropriate for AM of bioreactors.
Our study comprises three phases which deductively narrowed down the material selection;
these phases are the determination of material requirements, pre-selection, and fine selection of
suitable materials. With the proposed method, a material selection for AM of functional
bioreactors (consisting of bioreactor housing and integrated additively manufactured electrodes
for electrical stimulation of the cells) could be efficiently made. For the bioreactor housing, two
of the investigated materials, high-temperature polylactic acid (HTPLA) and polypropylene
(PP) meet all requirements. The materials of the bioreactor electrodes could be narrowed down
to polyethylene with copper particles (PE-Cu) and poly lactic acid with graphene nanoplates
(PLA-GNP), where PE-Cu fulfilled all requirements besides the biocompatibility. PLA-GNP
matches all requirements besides the high temperature resistance. For a final selection of the
material for the bioreactor electrodes, further tests are required. However, this approach enabled
to reduce the amount of biocompatibility testing from 16 different materials to only four (-
75%), saving material, time, capacity and costs.Mechanical Engineerin
Cerebral blood flow in presymptomatic MAPT and GRN mutation carriers: A longitudinal arterial spin labeling study
Objective Frontotemporal dementia (FTD) is characterized by behavioral disturbances and language problems. Familial forms can be caused by genetic defects in microtubule-associated protein tau (MAPT), progranulin (GRN), and C9orf72. In light of upcoming clinical trials with potential disease-modifying agents, the development of sensitive biomarkers to evaluate such agents in the earliest stage of FTD is crucial. In the current longitudinal study we used arterial spin labeling MRI (ASL) in presymptomatic carriers of MAPT and GRN mutations to investigate early changes in cerebral blood flow (CBF). Methods Healthy first-degree relatives of patients with a MAPT or GRN mutation underwent ASL at baseline and follow-up after two years. We investigated cross-sectional and longitudinal differences in CBF between mutation carriers (n = 34) and controls without a mutation (n = 31). Results GRN mutation carriers showed significant frontoparietal hypoperfusion compared with controls at follow-up, whereas we found no cross-sectional group differences in the total study group or the MAPT subgroup. Longitudinal analyses revealed a significantly stronger decrease in CBF in frontal, temporal, parietal, and subcortical areas in the total group of mutation carriers and the GRN subgroup, with the strongest decrease in two mutation carriers who converted to clinical FTD during follow-up. Interpretation We demonstrated longitudinal alterations in CBF in presymptomatic FTD independent of grey matter atrophy, with the strongest decrease in individuals that developed symptoms during follow-up. Therefore, ASL could have the potential to serve as a sensitive biomarker of disease progression in the presymptomatic stage of FTD in future clinical trials
Resting state functional connectivity differences between behavioral variant frontotemporal dementia and Alzheimer's disease
Introduction: Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD) are the most common types of early-onset dementia. Early differentiation between both types of dementia may be challenging due to heterogeneity and overlap of symptoms. Here, we apply resting state functional magnetic resonance imaging (fMRI) to study functional brain connectivity differences between AD and bvFTD. Methods: We used resting state fMRI data of 31 AD patients, 25 bvFTD patients, and 29 controls from two centers specialized in dementia. We studied functional connectivity throughout the entire brain, applying two different analysis techniques, studying network-to-region and region-to-region connectivity. A general linear model approach was used to study group differences, while controlling for physiological noise, age, gender, study center, and regional gray matter volume. Results: Given gray matter differences, we observed decreased network-to-region connectivity in bvFTD between (a) lateral visual cortical network and lateral occipital and cuneal cortex, and (b) auditory system network and angular gyrus. In AD, we found decreased network-to-region connectivity between the dorsal visual stream network and lateral occipital and parietal opercular cortex. Region-to-region connectivity was decreased in bvFTD between superior temporal gyrus and cuneal, supracalcarine, intracalcarine cortex, and lingual gyrus. Conclusion: We showed that the pathophysiology
Differential linguistic features of verbal fluency in behavioral variant frontotemporal dementia and primary progressive aphasia
Frontotemporal dementia (FTD) is an early-onset neurodegenerative disorder with a heterogeneous clinical presentation. Verbal fluency is regularly used as a sensitive measure of language ability, semantic memory, and executive functioning, but qualitative changes in verbal fluency in FTD are currently overlooked. This retrospective study examined qualitative, linguistic features of verbal fluency in 137 patients with behavioral variant (bv)FTD (n = 50), or primary progressive aphasia (PPA) [25 non-fluent variant (nfvPPA), 27 semantic variant (svPPA), and 34 logopenic variant (lvPPA)] and 25 control participants. Between-group differences in clustering, switching, lexical frequency (LF), age of acquisition (AoA), neighborhood density (ND), and word length (WL) were examined in the category and letter fluency with analysis of variance adjusted for age, sex, and the total number of words. Associations with other cognitive functions were explored with linear regression analysis. The results showed that the verbal fluency performance of patients with svPPA could be distinguished from controls and other patient groups by fewer and smaller clusters, more switches, higher LF, and lower AoA (all p < 0.05). Patients with lvPPA specifically produced words with higher ND than the other patient groups (p < 0.05). Patients with bvFTD produced longer words than the PPA groups (p < 0.05). Clustering, switching, LF, AoA, and ND-but not WL-were differentially predicted by measures of language, memory, and executive functioning (range standardized regression coefficient 0.25-0.41). In addition to the total number of words, qualitative linguistic features differ between subtypes of FTD. These features provide additional information on lexical processing and semantic memory that may aid the differential diagnosis of FTD
Dianthracenylazatrioxa[8]circulene: synthesis, characterization and application in OLEDs
A soluble, green-blue fluorescent, pi-extended azatrioxa[8]circulene was synthesized by oxidative condensation of a 3,6-dihydroxycarbazole and 1,4-anthraquinone by using benzofuran scaffolding. This is the first circulene to incorporate anthracene within its carbon framework. Solvent-dependent fluorescence and bright green electroluminescence accompanied by excimer emission are the key optical properties of this material. The presence of sliding pi-stacked columns in the single crystal of dianthracenylazatrioxa[8]circulene is found to cause a very high electron-hopping rate, thus making this material a promising n-type organic semiconductor with an electron mobility predicted to be around 2.26 cm(2) V-1 s(-1). The best organic light-emitting diode (OLED) device based on the dianthracenylazatrioxa[8]circulene fluorescent emitter has a brightness of around 16 000 Cd m(-2) and an external quantum efficiency of 3.3 %. Quantum dot-based OLEDs were fabricated by using dianthracenylazatrioxa[8]circulene as a host matrix material.Peer reviewe
Symmetrical Corticobasal Syndrome Caused by a Novel c.314dup Progranulin Mutation
Corticobasal syndrome (CBS) is characterised by asymmetrical parkinsonism and cognitive impairment. The underlying pathology varies between corticobasal degeneration, progressive supranuclear palsy, Alzheimer’s disease, Creutzfeldt–Jakob disease and frontotemporal lobar degeneration sometimes in association with GRN mutations. A 61-year-old male underwent neurological examination, neuropsychological assessment, MRI, and HMPAO-SPECT at our medical centre. After his death at the age of 63, brain autopsy, genetic screening and mRNA expression analysis were performed. The patient presented with slow progressive walking disabilities, non-fluent language problems, behavioural changes and forgetfulness. His family history was negative. He had primitive reflexes, rigidity of his arms and postural instability. Later in the disease course he developed dystonia of his left leg, pathological crying, mutism and dysphagia. Neuropsychological assessment revealed prominent ideomotor and ideational apraxia, executive dysfunction, non-fluent aphasia and memory deficits. Neuroimaging showed symmetrical predominant frontoparietal atrophy and hypoperfusion. Frontotemporal lobar degeneration (FTLD)-TDP type 3 pathology was found at autopsy. GRN sequencing revealed a novel frameshift mutation c.314dup, p.Cys105fs and GRN mRNA levels showed a 50% decrease. We found a novel GRN mutation in a patient with an atypical (CBS) presentation with symmetric neuroimaging findings. GRN mutations are an important cause of CBS associated with FTLD-TDP type 3 pathology, sometimes in sporadic cases. Screening for GRN mutations should also be considered in CBS patients without a positive family history
Neuronal pentraxin 2 : a synapse-derived CSF biomarker in genetic frontotemporal dementia
Introduction: Synapse dysfunction is emerging as an early pathological event in frontotemporal dementia (FTD), however biomarkers are lacking. We aimed to investigate the value of cerebrospinal fluid (CSF) neuronal pentraxins (NPTXs), a family of proteins involved in homeostatic synapse plasticity, as novel biomarkers in genetic FTD. Methods: We included 106 presymptomatic and 54 symptomatic carriers of a pathogenic mutation in GRN, C9orf72 or MAPT, and 70 healthy non-carriers participating in the Genetic Frontotemporal dementia Initiative (GENFI), all of whom had at least one CSF sample. We measured CSF concentrations of NPTX2 using an in-house ELISA, and NPTX1 and NPTX receptor (NPTXR) by Western blot. We correlated NPTX2 with corresponding clinical and neuroimaging datasets as well as with CSF neurofilament light chain (NfL) using linear regression analyses. Results: Symptomatic mutation carriers had lower NPTX2 concentrations (median 643 pg/mL, IQR (301-872)) than presymptomatic carriers (1003 pg/mL (624-1358), p<0.001) and non-carriers (990 pg/mL (597-1373), p<0.001) (corrected for age). Similar results were found for NPTX1 and NPTXR. Among mutation carriers, NPTX2 concentration correlated with several clinical disease severity measures, NfL and grey matter volume of the frontal, temporal and parietal lobes, insula and whole brain. NPTX2 predicted subsequent decline in phonemic verbal fluency and Clinical Dementia Rating scale plus FTD modules. In longitudinal CSF samples, available in 13 subjects, NPTX2 decreased around symptom onset and in the symptomatic stage. Discussion: We conclude that NPTX2 is a promising synapse-derived disease progression biomarker in genetic FTD
Elevated CSF and plasma complement proteins in genetic frontotemporal dementia: results from the GENFI study
Background: Neuroinflammation is emerging as an important pathological process in frontotemporal dementia (FTD), but biomarkers are lacking. We aimed to determine the value of complement proteins, which are key components of innate immunity, as biomarkers in cerebrospinal fluid (CSF) and plasma of presymptomatic and symptomatic genetic FTD mutation carriers. Methods: We measured the complement proteins C1q and C3b in CSF by ELISAs in 224 presymptomatic and symptomatic GRN, C9orf72 or MAPT mutation carriers and non-carriers participating in the Genetic Frontotemporal Dementia Initiative (GENFI), a multicentre cohort study. Next, we used multiplex immunoassays to measure a panel of 14 complement proteins in plasma of 431 GENFI participants. We correlated complement protein levels with corresponding clinical and neuroimaging data, neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP). Results: CSF C1q and C3b, as well as plasma C2 and C3, were elevated in symptomatic mutation carriers compared to presymptomatic carriers and non-carriers. In genetic subgroup analyses, these differences remained statistically significant for C9orf72 mutation carriers. In presymptomatic carriers, several complement proteins correlated negatively with grey matter volume of FTD-related regions and positively with NfL and GFAP. In symptomatic carriers, correlations were additionally observed with disease duration and with Mini Mental State Examination and Clinical Dementia Rating scale® plus NACC Frontotemporal lobar degeneration sum of boxes scores. Conclusions: Elevated levels of CSF C1q and C3b, as well as plasma C2 and C3, demonstrate the presence of complement activation in the symptomatic stage of genetic FTD. Intriguingly, correlations with several disease measures in presymptomatic carriers suggest that complement protein levels might increase before symptom onset. Although the overlap between groups precludes their use as diagnostic markers, further research is needed to determine their potential to monitor dysregulation of the complement system in FTD
First, tau causes NO problem
Pathological tau disrupts the association between nitric oxide (NO) synthase and PSD95, impairing NO signaling and neurovascular coupling before causing neurodegeneration. Stopping production of pathological tau rescues NO signaling, neurovascular coupling and neuronal function, but doesn’t remove tangles, suggesting that (like amyloid-β) soluble tau is an important driver of early neurovascular dysfunction and subsequent neuronal damage
A data-driven disease progression model of fluid biomarkers in genetic frontotemporal dementia
Several CSF and blood biomarkers for genetic frontotemporal dementia have been proposed, including those reflecting neuroaxonal loss (neurofilament light chain and phosphorylated neurofilament heavy chain), synapse dysfunction [neuronal pentraxin 2 (NPTX2)], astrogliosis (glial fibrillary acidic protein) and complement activation (C1q, C3b). Determining the sequence in which biomarkers become abnormal over the course of disease could facilitate disease staging and help identify mutation carriers with prodromal or early-stage frontotemporal dementia, which is especially important as pharmaceutical trials emerge. We aimed to model the sequence of biomarker abnormalities in presymptomatic and symptomatic genetic frontotemporal dementia using cross-sectional data from the Genetic Frontotemporal dementia Initiative (GENFI), a longitudinal cohort study. Two-hundred and seventy-five presymptomatic and 127 symptomatic carriers of mutations in GRN, C9orf72 or MAPT, as well as 247 non-carriers, were selected from the GENFI cohort based on availability of one or more of the aforementioned biomarkers. Nine presymptomatic carriers developed symptoms within 18 months of sample collection (\u27converters\u27). Sequences of biomarker abnormalities were modelled for the entire group using discriminative event-based modelling (DEBM) and for each genetic subgroup using co-initialized DEBM. These models estimate probabilistic biomarker abnormalities in a data-driven way and do not rely on previous diagnostic information or biomarker cut-off points. Using cross-validation, subjects were subsequently assigned a disease stage based on their position along the disease progression timeline. CSF NPTX2 was the first biomarker to become abnormal, followed by blood and CSF neurofilament light chain, blood phosphorylated neurofilament heavy chain, blood glial fibrillary acidic protein and finally CSF C3b and C1q. Biomarker orderings did not differ significantly between genetic subgroups, but more uncertainty was noted in the C9orf72 and MAPT groups than for GRN. Estimated disease stages could distinguish symptomatic from presymptomatic carriers and non-carriers with areas under the curve of 0.84 (95% confidence interval 0.80-0.89) and 0.90 (0.86-0.94) respectively. The areas under the curve to distinguish converters from non-converting presymptomatic carriers was 0.85 (0.75-0.95). Our data-driven model of genetic frontotemporal dementia revealed that NPTX2 and neurofilament light chain are the earliest to change among the selected biomarkers. Further research should investigate their utility as candidate selection tools for pharmaceutical trials. The model\u27s ability to accurately estimate individual disease stages could improve patient stratification and track the efficacy of therapeutic interventions
- …