7,322 research outputs found
Multithermal Analysis of a CDS Coronal Loop
The observations from 1998 April 20 taken with the Coronal Diagnostics
Spectrometer CDS on SOHO of a coronal loop on the limb have shown that the
plasma was multi-thermal along each line of sight investigated, both before and
after background subtraction. The latter result relied on Emission Measure Loci
plots, but in this Letter, we used a forward folding technique to produce
Differential Emission Measure curves. We also calculate DEM-weighted
temperatures for the chosen pixels and find a gradient in temperature along the
loop as a function of height that is not compatible with the flat profiles
reported by numerous authors for loops observed with EIT on SOHO and TRACE. We
also find discrepancies in excess of the mathematical expectation between some
of the observed and predicted CDS line intensities. We demonstrate that these
differences result from well-known limitations in our knowledge of the atomic
data and are to be expected. We further show that the precision of the DEM is
limited by the intrinsic width of the ion emissivity functions that are used to
calculate the DEM. Hence we conclude that peaks and valleys in the DEM, while
in principle not impossible, cannot be confirmed from the data.Comment: 12 pages, 3 figures, Accepted by ApJ Letter
Solar Coronal Structures and Stray Light in TRACE
Using the 2004 Venus transit of the Sun to constrain a semi-empirical
point-spread function for the TRACE EUV solar telescope, we have measured the
effect of stray light in that telescope. We find that 43% of 171A EUV light
that enters TRACE is scattered, either through diffraction off the entrance
filter grid or through other nonspecular effects. We carry this result forward,
via known-PSF deconvolution of TRACE images, to identify its effect on analysis
of TRACE data. Known-PSF deconvolution by this derived PSF greatly reduces the
effect of visible haze in the TRACE 171A images, enhances bright features, and
reveals that the smooth background component of the corona is considerably less
bright (and hence much more rarefied) than commonly supposed. Deconvolution
reveals that some prior conlclusions about the Sun appear to have been based on
stray light in the images. In particular, the diffuse background "quiet corona"
becomes consistent with hydrostatic support of the coronal plasma; feature
contrast is greatly increased, possibly affecting derived parameters such as
the form of the coronal heating function; and essentially all existing
differential emission measure studies of small features appear to be affected
by contamination from nearby features. We speculate on further implications of
stray light for interpretation of EUV images from TRACE and similar
instruments, and advocate deconvolution as a standard tool for image analysis
with future instruments such as SDO/AIA.Comment: Accepted by APJ; v2 reformatted to single-column format for online
readabilit
No elliptic islands for the universal area-preserving map
A renormalization approach has been used in \cite{EKW1} and \cite{EKW2} to
prove the existence of a \textit{universal area-preserving map}, a map with
hyperbolic orbits of all binary periods. The existence of a horseshoe, with
positive Hausdorff dimension, in its domain was demonstrated in \cite{GJ1}. In
this paper the coexistence problem is studied, and a computer-aided proof is
given that no elliptic islands with period less than 20 exist in the domain. It
is also shown that less than 1.5% of the measure of the domain consists of
elliptic islands. This is proven by showing that the measure of initial
conditions that escape to infinity is at least 98.5% of the measure of the
domain, and we conjecture that the escaping set has full measure. This is
highly unexpected, since generically it is believed that for conservative
systems hyperbolicity and ellipticity coexist
Flare magnetic reconnection and relativistic particles in the 2003 October 28 event
An X17.2 solar flare occurred on 2003 October 28, accompanied by
multi-wavelength emissions and a high flux of relativistic particles observed
at 1AU. We present the analytic results of the TRACE, SOHO, RHESSI, ACE, GOES,
hard X-ray (INTEGRAL satellite), radio (Onderejov radio telescope), and neutron
monitor data. It is found that the inferred magnetic reconnection electric
field correlates well with the hard X-ray, gamma-ray, and neutron emission at
the Sun. Thus the flare's magnetic reconnection probably makes a crucial
contribution to the prompt relativistic particles, which could be detected at 1
AU. Since the neutrons were emitted a few minutes before the injection of
protons and electrons, we propose a magnetic-field evolution configuration to
explain this delay. We do not exclude the effect of CME-driven shock, which
probably plays an important role in the delayed gradual phase of solar
energetic particles.Comment: 5 pages, 7 figures, accepted by A&
Exact Results for the Kuramoto Model with a Bimodal Frequency Distribution
We analyze a large system of globally coupled phase oscillators whose natural
frequencies are bimodally distributed. The dynamics of this system has been the
subject of long-standing interest. In 1984 Kuramoto proposed several
conjectures about its behavior; ten years later, Crawford obtained the first
analytical results by means of a local center manifold calculation.
Nevertheless, many questions have remained open, especially about the
possibility of global bifurcations. Here we derive the system's complete
stability diagram for the special case where the bimodal distribution consists
of two equally weighted Lorentzians. Using an ansatz recently discovered by Ott
and Antonsen, we show that in this case the infinite-dimensional problem
reduces exactly to a flow in four dimensions. Depending on the parameters and
initial conditions, the long-term dynamics evolves to one of three states:
incoherence, where all the oscillators are desynchronized; partial synchrony,
where a macroscopic group of phase-locked oscillators coexists with a sea of
desynchronized ones; and a standing wave state, where two counter-rotating
groups of phase-locked oscillators emerge. Analytical results are presented for
the bifurcation boundaries between these states. Similar results are also
obtained for the case in which the bimodal distribution is given by the sum of
two Gaussians.Comment: 28 pages, 7 figures; submitted to Phys. Rev. E Added comment
Comparing Aimed Movements in the Real World and in Virtual Reality
The study of aimed movements has a long history, starting at least as far back as 1899 when Woodworth proposed a two-component model in which aimed movements are broken into an initial ballistic phase and an additional control phase. In this paper, we use Woodworth’s model for experimentally comparing aimed movements in the real world with those in a virtual environment. Trajectories from real world movements have been collected and compared to trajectories of movements taken from a virtual environment. From this, we show that significant temporal differences arise in both the ballistic and control phases, but the difference is much larger in the control phase; users’ improvement is relatively greater in the virtual world than in the real world. They progress more in ballistic phase in the real world, but more in correction phase in the virtual world. These results allow us to better understand the pointing tasks in virtual environments
Comparing Aimed Movements in the Real World and in Virtual Reality
The study of aimed movements has a long history, starting at least as far back as 1899 when Woodworth proposed a two-component model in which aimed movements are broken into an initial ballistic phase and an additional control phase. In this paper, we use Woodworth’s model for experimentally comparing aimed movements in the real world with those in a virtual environment. Trajectories from real world movements have been collected and compared to trajectories of movements taken from a virtual environment. From this, we show that significant temporal differences arise in both the ballistic and control phases, but the difference is much larger in the control phase; users’ improvement is relatively greater in the virtual world than in the real world. They progress more in ballistic phase in the real world, but more in correction phase in the virtual world. These results allow us to better understand the pointing tasks in virtual environments
Tridimensional assessment of adductor spasmodic dysphonia pre- and post-treatment with Botulinum toxin
Spasmodic dysphonia voices form, in the same way as substitution voices, a particular category of dysphonia that seems not suited for a standardized basic multidimensional assessment protocol, like the one proposed by the European Laryngological Society. Thirty-three exhaustive analyses were performed on voices of 19 patients diagnosed with adductor spasmodic dysphonia (SD), before and after treatment with Botulinum toxin. The speech material consisted of 40 short sentences phonetically selected for constant voicing. Seven perceptual parameters (traditional and dedicated) were blindly rated by a panel of experienced clinicians. Nine acoustic measures (mainly based on voicing evidence and periodicity) were achieved by a special analysis program suited for strongly irregular signals and validated with synthesized deviant voices. Patients also filled in a VHI-questionnaire. Significant improvement is shown by all three approaches. The traditional GRB perceptual parameters appear to be adequate for these patients. Conversely, the special acoustic analysis program is successful in objectivating the improved regularity of vocal fold vibration: the basic jitter remains the most valuable parameter, when reliably quantified. The VHI is well suited for the voice-related quality of life. Nevertheless, when considering pre-therapy and post-therapy changes, the current study illustrates a complete lack of correlation between the perceptual, acoustic, and self-assessment dimensions. Assessment of SD-voices needs to be tridimensional
- …