1,870 research outputs found
Power computation for the triboelectric nanogenerator
We consider, from a mathematical perspective, the power generated by a
contact-mode triboelectric nanogenerator, an energy harvesting device that has
been well studied recently. We encapsulate the behaviour of the device in a
differential equation, which although linear and of first order, has periodic
coefficients, leading to some interesting mathematical problems. In studying
these, we derive approximate forms for the mean power generated and the current
waveforms, and describe a procedure for computing the Fourier coefficients for
the current, enabling us to show how the power is distributed over the
harmonics. Comparisons with accurate numerics validate our analysis
Animal, Plant, Collagen and Blended Dietary Proteins: Effects on Musculoskeletal Outcomes
This is the final version. Available from MDPI via the DOI in this record.Dietary protein is critical for the maintenance of musculoskeletal health, whereappropriate intake (i.e., source, dose, timing) can mitigate declines in muscle and bone mass and/orfunction. Animal-derived protein is a potent anabolic source due to rapid digestion and absorptionkinetics stimulating robust increases in muscle protein synthesis and promoting bone accretion andmaintenance. However, global concerns surrounding environmental sustainability has led to anincreasing interest in plant- and collagen-derived protein as alternative or adjunct dietary sources.This is despite the lower anabolic profile of plant and collagen protein due to the inferior essentialamino acid profile (e.g., lower leucine content) and subordinate digestibility (versus animal). Thisreview evaluates the efficacy of animal-, plant- and collagen-derived proteins in isolation, and asprotein blends, for augmenting muscle and bone metabolism and health in the context of ageing,exercise and energy restriction.Medical Research Council (MRC)National Institute for Health Researc
Bifurcation curves of subharmonic solutions
We revisit a problem considered by Chow and Hale on the existence of
subharmonic solutions for perturbed systems. In the analytic setting, under
more general (weaker) conditions, we prove their results on the existence of
bifurcation curves from the nonexistence to the existence of subharmonic
solutions. In particular our results apply also when one has degeneracy to
first order -- i.e. when the subharmonic Melnikov function vanishes
identically. Moreover we can deal as well with the case in which degeneracy
persists to arbitrarily high orders, in the sense that suitable generalisations
to higher orders of the subharmonic Melnikov function are also identically
zero. In general the bifurcation curves are not analytic, and even when they
are smooth they can form cusps at the origin: we say in this case that the
curves are degenerate as the corresponding tangent lines coincide. The
technique we use is completely different from that of Chow and Hale, and it is
essentially based on rigorous perturbation theory.Comment: 29 pages, 2 figure
Direct aerosol chemical composition measurements to evaluate the physicochemical differences between controlled sea spray aerosol generation schemes
Controlled laboratory studies of the physical and chemical properties of sea spray aerosol (SSA) must be under-pinned by a physically and chemically accurate representation of the bubble-mediated production of nascent SSA particles. Bubble bursting is sensitive to the physico-chemical properties of seawater. For a sample of seawater, any important differences in the SSA production mechanism are projected into the composition of the aerosol particles produced. Using direct chemical measurements of SSA at the single-particle level, this study presents an intercomparison of three laboratory-based, bubble-mediated SSA production schemes: gas forced through submerged sintered glass filters ("frits"), a pulsed plunging-waterfall apparatus, and breaking waves in a wave channel filled with natural seawater. The size-resolved chemical composition of SSA particles produced by breaking waves is more similar to particles produced by the plunging waterfall than those produced by sintered glass filters. Aerosol generated by disintegrating foam produced by sintered glass filters contained a larger fraction of organic-enriched particles and a different size-resolved elemental composition, especially in the 0.8â2 Îźm dry diameter range. Interestingly, chemical differences between the methods only emerged when the particles were chemically analyzed at the single-particle level as a function of size; averaging the elemental composition of all particles across all sizes masked the differences between the SSA samples. When dried, SSA generated by the sintered glass filters had the highest fraction of particles with spherical morphology compared to the more cubic structure expected for pure NaCl particles produced when the particle contains relatively little organic carbon. In addition to an intercomparison of three SSA production methods, the role of the episodic or "pulsed" nature of the waterfall method on SSA composition was under-taken. In organic-enriched seawater, the continuous operation of the plunging waterfall resulted in the accumulation of surface foam and an over-expression of organic matter in SSA particles compared to those produced by a pulsed plunging waterfall. Throughout this set of experiments, comparative differences in the SSA number size distribution were coincident with differences in aerosol particle composition, indicating that the production mechanism of SSA exerts important controls on both the physical and chemical properties of the resulting aerosol with respect to both the internal and external mixing state of particles. This study provides insight into the inextricable physicochemical differences between each of the bubble-mediated SSA generation mechanisms tested and the aerosol particles that they produce, and also serves as a guideline for future laboratory studies of SSA particles
The Foot of \u3cem\u3eHomo naledi\u3c/em\u3e
Modern humans are characterized by a highly specialized foot that reflects our obligate bipedalism. Our understanding of hominin foot evolution is, although, hindered by a paucity of well-associated remains. Here we describe the foot of Homo naledi from Dinaledi Chamber, South Africa, using 107 pedal elements, including one nearly-complete adult foot. The H. naledi foot is predominantly modern human-like in morphology and inferred function, with an adducted hallux, an elongated tarsus, and derived ankle and calcaneocuboid joints. In combination, these features indicate a foot well adapted for striding bipedalism. However, the H. naledi foot differs from modern humans in having more curved proximal pedal phalanges, and features suggestive of a reduced medial longitudinal arch. Within the context of primitive features found elsewhere in the skeleton, these findings suggest a unique locomotor repertoire for H. naledi, thus providing further evidence of locomotor diversity within both the hominin clade and the genus Homo
The foot of Homo naledi
Modern humans are characterized by a highly specialized foot that reflects our obligate bipedalism. Our understanding of hominin foot evolution is, although, hindered by a paucity of well-associated remains. Here we describe the foot of Homo naledi from Dinaledi Chamber, South Africa, using 107 pedal elements, including one nearly-complete adult foot. The H. naledi foot is predominantly modern human-like in morphology and inferred function, with an adducted hallux, an elongated tarsus, and derived ankle and calcaneocuboid joints. In combination, these features indicate a foot well adapted for striding bipedalism. However, the H. naledi foot differs from modern humans in having more curved proximal pedal phalanges, and features suggestive of a reduced medial longitudinal arch. Within the context of primitive features found elsewhere in the skeleton, these findings suggest a unique locomotor repertoire for H. naledi, thus providing further evidence of locomotor diversity within both the hominin clade and the genus Homo
Influence of through-flow on linear pattern formation properties in binary mixture convection
We investigate how a horizontal plane Poiseuille shear flow changes linear
convection properties in binary fluid layers heated from below. The full linear
field equations are solved with a shooting method for realistic top and bottom
boundary conditions. Through-flow induced changes of the bifurcation thresholds
(stability boundaries) for different types of convective solutions are deter-
mined in the control parameter space spanned by Rayleigh number, Soret coupling
(positive as well as negative), and through-flow Reynolds number. We elucidate
the through-flow induced lifting of the Hopf symmetry degeneracy of left and
right traveling waves in mixtures with negative Soret coupling. Finally we
determine with a saddle point analysis of the complex dispersion relation of
the field equations over the complex wave number plane the borders between
absolute and convective instabilities for different types of perturbations in
comparison with the appropriate Ginzburg-Landau amplitude equation
approximation. PACS:47.20.-k,47.20.Bp, 47.15.-x,47.54.+rComment: 19 pages, 15 Postscript figure
Revisiting Date and Party Hubs: Novel Approaches to Role Assignment in Protein Interaction Networks
The idea of 'date' and 'party' hubs has been influential in the study of
protein-protein interaction networks. Date hubs display low co-expression with
their partners, whilst party hubs have high co-expression. It was proposed that
party hubs are local coordinators whereas date hubs are global connectors. Here
we show that the reported importance of date hubs to network connectivity can
in fact be attributed to a tiny subset of them. Crucially, these few, extremely
central, hubs do not display particularly low expression correlation,
undermining the idea of a link between this quantity and hub function. The
date/party distinction was originally motivated by an approximately bimodal
distribution of hub co-expression; we show that this feature is not always
robust to methodological changes. Additionally, topological properties of hubs
do not in general correlate with co-expression. Thus, we suggest that a
date/party dichotomy is not meaningful and it might be more useful to conceive
of roles for protein-protein interactions rather than individual proteins. We
find significant correlations between interaction centrality and the functional
similarity of the interacting proteins.Comment: 27 pages, 5 main figures, 4 supplementary figure
MIGHTEE: total intensity radio continuum imaging and the COSMOS / XMM-LSS Early Science fields
Š 2021 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1093/mnras/stab3021MIGHTEE is a galaxy evolution survey using simultaneous radio continuum, spectro-polarimetry, and spectral line observations from the South African MeerKAT telescope. When complete, the survey will image 20 deg over the COSMOS, E-CDFS, ELAIS-S1, and XMM-LSS extragalactic deep fields with a central frequency of 1284 MHz. These were selected based on the extensive multiwavelength datasets from numerous existing and forthcoming observational campaigns. Here we describe and validate the data processing strategy for the total intensity continuum aspect of MIGHTEE, using a single deep pointing in COSMOS (1.6 deg) and a three-pointing mosaic in XMM-LSS (3.5 deg). The processing includes the correction of direction-dependent effects, and results in thermal noise levels below 2~Jy beam in both fields, limited in the central regions by classical confusion at 8 angular resolution, and meeting the survey specifications. We also produce images at 5 resolution that are 3 times shallower. The resulting image products form the basis of the Early Science continuum data release for MIGHTEE. From these images we extract catalogues containing 9,896 and 20,274 radio components in COSMOS and XMM-LSS respectively. We also process a close-packed mosaic of 14 additional pointings in COSMOS and use these in conjunction with the Early Science pointing to investigate methods for primary beam correction of broadband radio images, an analysis that is of relevance to all full-band MeerKAT continuum observations, and wide field interferometric imaging in general. A public release of the MIGHTEE Early Science continuum data products accompanies this article.Peer reviewedFinal Accepted Versio
- âŚ