29 research outputs found

    Human health risk assessment in relation to environmental pollution of two artificial freshwater lakes in The Netherlands.

    Get PDF
    A human health risk assessment has been performed in relation to recreational activities on two artificial freshwater lakes along the river Meuse in The Netherlands. Although the discharges of contaminants into the river Meuse have been reduced in the last decades, which is reflected in decreasing concentrations of pollutants in surface water and suspended matter, the levels in sediments are more persistent. Sediments of the two freshwater lakes appear highly polluted and may pose a health risk in relation to recreational activities. To quantify health risks for carcinogenic (e.g., polycyclic aromatic hydrocarbons) as well as noncarcinogenic compounds (e.g., heavy metals), an exposure assessment model was used. First, we used a standard model that solely uses data on sediment pollution as the input parameter, which is the standard procedure in sediment quality assessments in The Netherlands. The highest intake appeared to be associated with the consumption of contaminated fish and resulted in a health risk for Pb and Zn (hazard index exceeded 1). For the other heavy metals and for benzo(a)pyrene, the total averaged exposure levels were below levels of concern. Secondly, input data for a more location-specific calculation procedure were provided via analyses of samples from sediment, surface water, and suspended matter. When these data (concentrations in surface water) were taken into account, the risk due to consumption of contaminated fish decreased by more than two orders of magnitude and appeared to be negligible. In both exposure assessments, many assumptions were made that contribute to a major degree to the uncertainty of this risk assessment. However, this health risk evaluation is useful as a screening methodology for assessing the urgency of sediment remediation actions

    Human health risk assessment: A case study involving heavy metal soil contamination after the flooding of the river Meuse during the winter of 1993-1994.

    Get PDF
    At the end of December 1993 and also at the end of January 1995, the river Meuse, one of the major rivers in Europe, flooded and river banks were inundated. We investigated the possible health risks of exposure to heavy metal concentrations in river bank soils resulting from the flooding of the river Meuse at the end of 1993. Soil and deposit samples and corresponding aerable and fodder crops were collected and analyzed for heavy metals. Although the soils of the floodplain of the river Meuse appeared severely polluted mainly by Cd and Zn, the heavy metal concentrations in the crops grown on these soils were within background ranges. Incidentally, the legal standard for Cd as endorsed by the Commodities Act was exceeded in wheat crops. The main exposure pathways for the general population were through the consumption of food crops grown on the river banks and through the direct ingestion of contaminated soils. For estimating potential human exposure in relation to soil pollution, we used a multiple pathway exposure model. For estimating the actual risk, we determined metal contents of vegetables grown in six experimental gardens. From this study, it can be concluded that there is a potential health risk for the river bank inhabitants as a consequence of Pb and Cd contaminations of the floodplain soils of the river Meuse, which are frequently inundated (averaged flooding frequency once every 2 years)

    Electronic structure and Fermi surface character of LaONiP from first principles

    Full text link
    Based on First-principles calculation, we have investigated electronic structure of a ZrCuSiAs structured superconductor LaNiPO. The density of states, band structures and Fermi surfaces have been given in detail. Our results indicate that the bonding of the La-O and Ni-P is strongly covalent whereas binding property between the LaO and NiP blocks is mostly ionic. It's also found that four bands are across the Fermi level and the corresponding Fermi surfaces all have a two-dimensional character. In addition, we also give the band decomposed charge density, which suggests that orbital components of Fermi surfaces are more complicated than cuprate superconductors.Comment: Submitted to Phys.Rev.

    Does the risk of childhood diabetes mellitus require revision of the guideline values for nitrate in drinking water?

    Get PDF
    In recent years, several studies have addressed a possible relationship between nitrate exposure and childhood type 1 insulin-dependent diabetes mellitus. The present ecologic study describes a possible relation between the incidence of type 1 diabetes and nitrate levels in drinking water in The Netherlands, and evaluates whether the World Health Organization and the European Commission standard for nitrate in drinking water (50 mg/L) is adequate to prevent risk of this disease. During 1993-1995 in The Netherlands, 1,104 cases of type 1 diabetes were diagnosed in children 0-14 years of age. We were able to use 1,064 of these cases in a total of 2,829,020 children in this analysis. We classified mean nitrate levels in drinking water in 3,932 postal code areas in The Netherlands in 1991-1995 into two exposure categories. One category was based on equal numbers of children exposed to different nitrate levels (0.25-2.08, 2.10-6.42, and 6.44-41.19 mg/L nitrate); the other was based on cut-off values of 10 and 25 mg/L nitrate. We determined standardized incidence ratios (SIRs) for type 1 diabetes in subgroups of the 2,829,020 children with respect to both nitrate exposure categories, sex, and age and as compared in univariate analysis using the chi-square test for trend. We compared the incidence rate ratios (IRRs) by multivariate analysis in a Poisson regression model. We found an effect of increasing age of the children on incidence of type 1 diabetes, but we did not find an effect of sex or of nitrate concentration in drinking water using the two exposure categories. For nitrate levels > 25 mg/L, an increased SIR and an increased IRR of 1.46 were observed; however, this increase was not statistically significant, probably because of the small number of cases (15 of 1,064). We concluded that there is no convincing evidence that nitrate in drinking water at current exposure levels is a risk factor for childhood type 1 diabetes mellitus in The Netherlands, although a threshold value > 25 mg/L for the occurrence of this disease can not be excluded

    Magnetic behaviour of Eu_2CuSi_3: Large negative magnetoresistance above Curie temperature

    Full text link
    We report here the results of magnetic susceptibility, electrical-resistivity, magnetoresistance (MR), heat-capacity and ^{151}Eu Mossbauer effect measurements on the compound, Eu_2CuSi_3, crystallizing in an AlB_2-derived hexagonal structure. The results establish that Eu ions are divalent, undergoing long-range ferromagnetic-ordering below (T_C=) 37 K. An interesting observation is that the sign of MR is negative even at temperatures close to 3T_C, with increasing magnitude with decreasing temperature exhibiting a peak at T_C. This observation, being made for a Cu containing magnetic rare-earth compound for the first time, is of relevance to the field of collosal magnetoresistance.Comment: To appear in PRB, RevTex, 4 pages text + 6 psFigs. Related to our earlier work on Gd systems (see cond-mat/9811382, cond-mat/9811387, cond-mat/9812069, cond-mat/9812365

    Electronic structure of new quaternary superconductors LaONiBi and LaOCuBi from first principles

    Full text link
    Based on first-principles FLAPW-GGA calculations, we have investigated the electronic structure of newly synthesized novel superconductors LaONiBi and LaOCuBi, the first bismuth-containing compounds from the family of quaternary oxypnictides which attract now a great deal of interest in search for novel 26-55K superconductors. The band structure, density of states and Fermi surfaces are discussed. Our results indicate that the bonding inside of the (La-O) and (Ni(Cu)-Bi) layers is covalent whereas the bonding between the (La-O) and (Ni(Cu)- Bi) blocks is mostly ionic. For both oxybismuthides, the DOSs at the Fermi level are formed mainly by the states of the (Ni(Cu)-Bi) layers, the corresponding Fermi surfaces have a twodimensional character and the conduction should be strongly anisotropic andhappen only on the (Ni(Cu)-Bi) layers. As a whole, the new oxybismuthides may be described as low-TC superconducting non-magnetic ionic metals.Comment: 13 pages, 5 figure
    corecore