67,691 research outputs found

    GIS Characterization of Beaver Watershed

    Get PDF
    Beaver Reservoir watershed is located in Northwest Arkansas including portions of Madison, Washington, Benton, Carroll, Franklin and Crawford counties. This watershed is important to the Northwest Arkansas region because it supplies most of the drinking water for the major towns and cities, and several rural water systems. The watershed consists of 308,971 ha with elevations ranging from approximately 341 m to 731 m above mean sea level. It includes the Springfield Plateau and the Boston Mountains provinces within the Ozark Plateau physiographic region. There are approximately 581 km of streams, 532 km of shore line, and 3712 km of roads in the watershed most of which are city streets and rural roads. The soils in the watershed vary extensively and are quite complex due to the differences in parent material, topography and time. Most parent material of the soils in the Springfield Plateau is limestone, whereas in the Boston Mountains the dominant parent material is sandstone and shale. The differences in soils have led to the differences in landuse and land cover. The near surface geology in the watershed is also divided by physiographic provinces. Most of the Springfield Plateau surface geology is limestone, whereas the Boston Mountains are primarily sandstone and shale. Spatial details of the streams, roads, soils and geology attributes in the watershed are presented in this report. The GIS database and characterization of the watershed offers an excellent beginning to future research and modeling of various water quality parameters in this and other watersheds

    Investigation of the Statistical and Spatial Distributions of Mercury Contaminated Fish, Surface Waters and Soils in Arkansas

    Get PDF
    Mercury (Hg) contamination of fish is a widespread problem throughout much of the United States and the world (Louisiana WWW page, 1997). Levels ofHg in fish suffic1ent to exceed the FDA action level of 1 mg kg-1 have been found in many water bodies, including some in Arkansas and Louisiana. As a result of the serious public health ramifications for developing fetuses and for people that subsist on native fish, fish consumption advisories due to Hg contamination have been issued in 29 states. Contamination of surface water bodies by Hg results from deforestation, forest fires, fossil fuels, mining, natural emissions and commercial emissions (Armstrong, 1994). In addition, Hg has a high affinity for organic matter in soil and sediments, and therefore, long-term storage of Hg is an environmental problem. An excellent review of the integration and synthesis of recent work on Hg pollution is given in several papers edited by Watras and Huckabee (1994). The general consensus of the reports in this document seems to be that increases in Hg levels can be attributed to one or more of several mechanisms including atmospheric deposition, acidification of soils and lakes by sulfur deposition followed by an increased sulfate reduction, and transport from other source areas

    Identification of Optimal Locations for Sampling Ground Water for Pesticides in the Mississippi Delta Region of Eastern Arkansas

    Get PDF
    Concerns about the presence of pesticides in the Mississippi River Valley alluvial aquifer in the Arkansas Delta have generated the need to develop a map of ground water vulnerability for this region comprised of approximately 10 million acres. Based on the availability of digital data and the scale of this study. we used a modified Pesticide DRASTIC model in a GRASS GIS environment to identify areas that were physically more sensitive to pesticide contamination than other areas within the Delta. Spatial distribution of pesticide loading was estimated from pesticide application rates in different crops and crop distribution map interpreted from satellite imagery. Relative ground water vulnerability index was expressed as a product of aquifer sensitivity index and pesticide loading index. The resulting map showing the spatial distribution of relative ground water vulnerability index values was intended for use in selecting optimal locations for sampling ground water for pesticides in the Arkansas Delta and for aid in implementing the Arkansas Agricultural Chemical Ground-Water Management Plan. The most sensitive areas in the Delta are distributed mostly along major streams where a combination of shallow depth to ground water, thin confining unit, permeable soils, and high recharge rate usually prevails. It is also in many of these areas where large acres of crops are grown, and pesticides are used. Consequently, many areas along major streams are also most vulnerable. These vulnerable areas may be targeted by planners and governmental agencies for further detailed evaluation. Uncertainties in the methodology and mapped input data, plus the dynamic nature of model factors, require continued and improved efforts in ground water vulnerability assessment for the Arkansas Delta

    Planetary Transits Toward the Galactic Bulge

    Get PDF
    The primary difficulty with using transits to discover extrasolar planets is the low probability a planet has of transiting its parent star. One way of overcoming this difficulty is to search for transits in dense stellar fields, such as the Galactic bulge. Here I estimate the number of planets that might be detected from a monitoring campaign toward the bulge. A campaign lasting 10 nights on a 10 meter telescope (assuming 8 hours of observations per night and a 5'x5' field of view) would detect about 100 planets with radius \rp=1.5 \rjup, or about 30 planets with \rp=1.0 \rjup, if the frequency and distribution of planets in the bulge is similar to that in the solar neighborhood. Most of these planets will be discovered around stars just below the turn-off, i.e. slightly evolved G-dwarfs. Campaigns involving 1- or 4-m class telescopes are unlikely to discover any planets, unless there exists a substantial population of companions with \rp > 1.5 \rjup.Comment: 4 pages, 4 figures. Submitted to ApJ Letter

    Negative Differential Resistivity and Positive Temperature Coefficient of Resistivity effect in the diffusion limited current of ferroelectric thin film capacitors

    Full text link
    We present a model for the leakage current in ferroelectric thin- film capacitors which explains two of the observed phenomena that have escaped satisfactory explanation, i.e. the occurrence of either a plateau or negative differential resistivity at low voltages, and the observation of a Positive Temperature Coefficient of Resistivity (PTCR) effect in certain samples in the high-voltage regime. The leakage current is modelled by considering a diffusion-limited current process, which in the high-voltage regime recovers the diffusion-limited Schottky relationship of Simmons already shown to be applicable in these systems

    Signatures of Resonant Super-Partner Production with Charged-Current Decays

    Full text link
    Hadron collider signatures of new physics are investigated in which a primary resonance is produced that decays to a secondary resonance by emitting a W-boson, with the secondary resonance decaying to two jets. This topology can arise in supersymmetric theories with R-parity violation where the lightest supersymmetric particles are either a pair of squarks, or a slepton - sneutrino pair. The resulting signal can have a cross section consistent with the Wjj observation reported by the CDF collaboration, while remaining consistent with earlier constraints. Other observables that can be used to confirm this scenario include a significant charge asymmetry in the same channel at the LHC. With strongly interacting resonances such as squarks, pair production topologies additionally give rise to 4 jet and WW + 4 jet signatures, each with two equal-mass dijet resonances within the 4 jets.Comment: Note added for recent developments concerning the Wjj final state. Version to appear in PRD. 21 pages, 12 figure
    • …
    corecore