1,450 research outputs found

    Role of p-f Hybridization in the Metal-Non-Metal Transition of PrRu4P12

    Full text link
    Electronic state evolution in the metal-non-metal transition of PrRu4P12 has been studied by X-ray and polarized neutron diffraction experiments. It has been revealed that, in the low-temperature non-metallic phase, two inequivalent crystal-field (CF) schemes of Pr3+ 4f^2 electrons with Gamma_1 and Gamma_4^(2) ground states are located at Pr1 and Pr2 sites forming the bcc unit cell surrounded by the smaller and larger cubic Ru-ion sublattices, respectively. This modulated electronic state can be explained by the p-f hybridization mechanism taking two intermediate states of 4f^1 and 4f^3. The p-f hybridization effect plays an important role for the electronic energy gain in the metal-non-metal transition originated from the Fermi surface nesting.Comment: 5 pages, 5 figures. Accepted by J. Phys. Soc. Jp

    Microscopic Mechanism for Staggered Scalar Order in PrFe4P12

    Full text link
    A microscopic model is proposed for the scalar order in PrFe4P12 where f2 crystalline electric field (CEF) singlet and triplet states interact with two conduction bands. By combining the dynamical mean-field theory and the continuous-time quantum Monte Carlo, we obtain an electronic order with staggered Kondo and CEF singlets with the total conduction number being unity per site. The ground state becomes semimetallic provided that the two conduction bands have different occupation numbers. This model naturally explains experimentally observed properties in the ordered phase of PrFe4P12 such as the scalar order parameter, temperature dependence of the resistivity, field-induced staggered moment, and inelastic features in neutron scattering. The Kondo effect plays an essential role for ordering, in strong contrast with ordinary magnetic orders by the RKKY interaction.Comment: 4 pages, 4figure

    Solution of reduced equations derived with singular perturbation methods

    Full text link
    For singular perturbation problems in dynamical systems, various appropriate singular perturbation methods have been proposed to eliminate secular terms appearing in the naive expansion. For example, the method of multiple time scales, the normal form method, center manifold theory, the renormalization group method are well known. In this paper, it is shown that all of the solutions of the reduced equations constructed with those methods are exactly equal to sum of the most divergent secular terms appearing in the naive expansion. For the proof, a method to construct a perturbation solution which differs from the conventional one is presented, where we make use of the theory of Lie symmetry group.Comment: To be published in Phys. Rev.

    A Field Effect Transitor based on the Mott Transition in a Molecular Layer

    Full text link
    Here we propose and analyze the behavior of a FET--like switching device, the Mott transition field effect transistor, operating on a novel principle, the Mott metal--insulator transition. The device has FET-like characteristics with a low ``ON'' impedance and high ``OFF'' impedance. Function of the device is feasible down to nanoscale dimensions. Implementation with a class of organic charge transfer complexes is proposed.Comment: Revtex 11pages, Figures available upon reques

    Electronic Orders Induced by Kondo Effect in Non-Kramers f-Electron Systems

    Full text link
    This paper clarifies the microscopic nature of the staggered scalar order, which is specific to even number of f electrons per site. In such systems, crystalline electric field (CEF) can make a singlet ground state. As exchange interaction with conduction electrons increases, the CEF singlet at each site gives way to Kondo singlets. The collective Kondo singlets are identified with itinerant states that form energy bands. Near the boundary of itinerant and localized states, a new type of electronic order appears with staggered Kondo and CEF singlets. We present a phenomenological three-state model that qualitatively reproduces the characteristic phase diagram, which have been obtained numerically with use of the continuous-time quantum Monte Carlo combined with the dynamical mean-field theory. The scalar order observed in PrFe_4P_{12} is ascribed to this staggered order accompanying charge density wave (CDW) of conduction electrons. Accurate photoemission and tunneling spectroscopy should be able to probe sharp peaks below and above the Fermi level in the ordered phase.Comment: 7 pages, 8 figure

    Social evolution leads to persistent corruption

    Get PDF
    Cooperation can be sustained by institutions that punish free-riders. Such institutions, however, tend to be subverted by corruption if they are not closely watched. Monitoring can uphold the enforcement of binding agreements ensuring cooperation, but this usually comes at a price. The temptation to skip monitoring and take the institution’s integrity for granted leads to outbreaks of corruption and the breakdown of cooperation. We model the corresponding mechanism by means of evolutionary game theory, using analytical methods and numerical simulations, and find that it leads to sustained or damped oscillations. The results confirm the view that corruption is endemic and transparency a major factor in reducing it

    Games of corruption: How to suppress illegal logging

    Get PDF
    Corruption is one of the most serious obstacles for ecosystem management and biodiversity conservation. In particular, more than half of the loss of forested area in many tropical countries is due to illegal logging, with corruption implicated in a lack of enforcement. Here we study an evolutionary game model to analyze the illegal harvesting of forest trees, coupled with the corruption of rule enforcers. We consider several types of harvesters, who may or may not be committed towards supporting an enforcer service, and who may cooperate (log legally) or defect (log illegally). We also consider two types of rule enforcers, honest and corrupt: while honest enforcers fulfill their function, corrupt enforcers accept bribes from defecting harvesters and refrain from fining them. We report three key findings. First, in the absence of strategy exploration, the harvester-enforcer dynamics are bistable: one continuum of equilibria consists of defecting harvesters and a low fraction of honest enforcers, while another consists of cooperating harvesters and a high fraction of honest enforcers. Both continua attract nearby strategy mixtures. Second, even a small rate of strategy exploration removes this bistability, rendering one of the outcomes globally stable. It is the relative rate of exploration among enforcers that then determines whether most harvesters cooperate or defect and most enforcers are honest or corrupt, respectively. This suggests that the education of enforcers, causing their more frequent trialing of honest conduct, can be a potent means of curbing corruption. Third, if information on corrupt enforcers is available, and players react opportunistically to it, the domain of attraction of cooperative outcomes widens considerably. We conclude by discussing policy implications of our results

    Evidence for Insulating Behavior in the Electric Conduction of (NH3_3)K3_3C60_{60} Systems

    Full text link
    Microwave study using cavity perturbation technique revealed that the conductivity of antiferromagnet (NH3_3)K3−x_{3-x}Rbx_xC60_{60} at 200K is already 3-4 orders of magnitude smaller than those of superconductors, K3_3C60_{60} and (NH3_3)x_xNaRb2_2C60_{60}, and that the antiferromagnetic compounds are {\it insulators} below 250K without metal-insulator transitions. The striking difference in the magnitude of the conductivity between these materials strongly suggests that the Mott-Hubbard transition in the ammoniated alkali fullerides is driven by a reduction of lattice symmetry from face-centered-cubic to face-centered-orthorhombic, rather than by the magnetic ordering.Comment: accepted for publication in PR

    On the origin of multiple ordered phases in PrFe4P12

    Full text link
    The nature of multiple electronic orders in skutterudite PrFe_4P_{12} is discussed on the basis of a model with antiferro-quadrupole (AFQ) interaction of \Gamma_3 symmetry. The high-field phase can be reproduced qualitatively provided (i) ferro-type interactions are introduced between the dipoles as well as between the octupoles of localized f-electrons, and (ii) separation is vanishingly small between the \Gamma_1-\Gamma_4^{(1)} crystalline electric field (CEF) levels. The high-field phase can have either the same ordering vector q=(1,0,0) as in the low-field phase, or a different one q=0 depending on the parameters. In the latter case, distortion of the crystal perpendicular to the (111) axis is predicted. The corresponding anomaly in elastic constants should also appear. The electrical resistivity is calculated with account of scattering within the CEF quasi-quartet. It is found that the resistivity as a function of the direction of magnetic field shows a sharp maximum around the (111) axis at low temperatures because of the level crossing.Comment: 16 pages, 5 figure
    • …
    corecore