54 research outputs found

    Fast Dynamic Graph Algorithms for Parameterized Problems

    Full text link
    Fully dynamic graph is a data structure that (1) supports edge insertions and deletions and (2) answers problem specific queries. The time complexity of (1) and (2) are referred to as the update time and the query time respectively. There are many researches on dynamic graphs whose update time and query time are o(G)o(|G|), that is, sublinear in the graph size. However, almost all such researches are for problems in P. In this paper, we investigate dynamic graphs for NP-hard problems exploiting the notion of fixed parameter tractability (FPT). We give dynamic graphs for Vertex Cover and Cluster Vertex Deletion parameterized by the solution size kk. These dynamic graphs achieve almost the best possible update time O(poly(k)logn)O(\mathrm{poly}(k)\log n) and the query time O(f(poly(k),k))O(f(\mathrm{poly}(k),k)), where f(n,k)f(n,k) is the time complexity of any static graph algorithm for the problems. We obtain these results by dynamically maintaining an approximate solution which can be used to construct a small problem kernel. Exploiting the dynamic graph for Cluster Vertex Deletion, as a corollary, we obtain a quasilinear-time (polynomial) kernelization algorithm for Cluster Vertex Deletion. Until now, only quadratic time kernelization algorithms are known for this problem. We also give a dynamic graph for Chromatic Number parameterized by the solution size of Cluster Vertex Deletion, and a dynamic graph for bounded-degree Feedback Vertex Set parameterized by the solution size. Assuming the parameter is a constant, each dynamic graph can be updated in O(logn)O(\log n) time and can compute a solution in O(1)O(1) time. These results are obtained by another approach.Comment: SWAT 2014 to appea

    Fast branching algorithm for Cluster Vertex Deletion

    Get PDF
    In the family of clustering problems, we are given a set of objects (vertices of the graph), together with some observed pairwise similarities (edges). The goal is to identify clusters of similar objects by slightly modifying the graph to obtain a cluster graph (disjoint union of cliques). Hueffner et al. [Theory Comput. Syst. 2010] initiated the parameterized study of Cluster Vertex Deletion, where the allowed modification is vertex deletion, and presented an elegant O(2^k * k^9 + n * m)-time fixed-parameter algorithm, parameterized by the solution size. In our work, we pick up this line of research and present an O(1.9102^k * (n + m))-time branching algorithm

    Orientation-dependent C60 electronic structures revealed by photoemission

    Full text link
    We observe, with angle-resolved photoemission, a dramatic change in the electronic structure of two C60 monolayers, deposited respectively on Ag (111) and (100) substrates, and similarly doped with potassium to half-filling of the C60 lowest unoccupied molecular orbital. The Fermi surface symmetry, the bandwidth, and the curvature of the dispersion at Gamma point are different. Orientations of the C60 molecules on the two substrates are known to be the main structural difference between the two monolayers, and we present new band-structure calculations for some of these orientations. We conclude that orientations play a key role in the electronic structure of fullerides.Comment: 4 pages, 4 figure

    Finding and counting vertex-colored subtrees

    Get PDF
    The problems studied in this article originate from the Graph Motif problem introduced by Lacroix et al. in the context of biological networks. The problem is to decide if a vertex-colored graph has a connected subgraph whose colors equal a given multiset of colors MM. It is a graph pattern-matching problem variant, where the structure of the occurrence of the pattern is not of interest but the only requirement is the connectedness. Using an algebraic framework recently introduced by Koutis et al., we obtain new FPT algorithms for Graph Motif and variants, with improved running times. We also obtain results on the counting versions of this problem, proving that the counting problem is FPT if M is a set, but becomes W[1]-hard if M is a multiset with two colors. Finally, we present an experimental evaluation of this approach on real datasets, showing that its performance compares favorably with existing software.Comment: Conference version in International Symposium on Mathematical Foundations of Computer Science (MFCS), Brno : Czech Republic (2010) Journal Version in Algorithmic

    Fixed-Parameter Tractable Distances to Sparse Graph Classes

    Get PDF
    We show that for various classes C\mathcal{C} of sparse graphs, and several measures of distance to such classes (such as edit distance and elimination distance), the problem of determining the distance of a given graph G\small{G} to C\mathcal{C} is fixed-parameter tractable. The results are based on two general techniques. The first of these, building on recent work of Grohe et al. establishes that any class of graphs that is slicewise nowhere dense and slicewise first-order definable is FPT. The second shows that determining the elimination distance of a graph G\small{G} to a minor-closed class C\mathcal{C} is FPT. We demonstrate that several prior results (of Golovach, Moser and Thilikos and Mathieson) on the fixed-parameter tractability of distance measures are special cases of our first method

    Enumerating Isolated Cliques in Temporal Networks

    Full text link
    Isolation is a concept from the world of clique enumeration that is mostly used to model communities that do not have much contact to the outside world. Herein, a clique is considered isolated if it has few edges connecting it to the rest of the graph. Motivated by recent work on enumerating cliques in temporal networks, we lift the isolation concept to this setting. We discover that the addition of the time dimension leads to six distinct natural isolation concepts. Our main contribution is the development of fixed-parameter enumeration algorithms for five of these six clique types employing the parameter "degree of isolation". On the empirical side, we implement and test these algorithms on (temporal) social network data, obtaining encouraging preliminary results

    Fixed-Parameter Algorithms in Analysis of Heuristics for Extracting Networks in Linear Programs

    Full text link
    We consider the problem of extracting a maximum-size reflected network in a linear program. This problem has been studied before and a state-of-the-art SGA heuristic with two variations have been proposed. In this paper we apply a new approach to evaluate the quality of SGA\@. In particular, we solve majority of the instances in the testbed to optimality using a new fixed-parameter algorithm, i.e., an algorithm whose runtime is polynomial in the input size but exponential in terms of an additional parameter associated with the given problem. This analysis allows us to conclude that the the existing SGA heuristic, in fact, produces solutions of a very high quality and often reaches the optimal objective values. However, SGA contain two components which leave some space for improvement: building of a spanning tree and searching for an independent set in a graph. In the hope of obtaining even better heuristic, we tried to replace both of these components with some equivalent algorithms. We tried to use a fixed-parameter algorithm instead of a greedy one for searching of an independent set. But even the exact solution of this subproblem improved the whole heuristic insignificantly. Hence, the crucial part of SGA is building of a spanning tree. We tried three different algorithms, and it appears that the Depth-First search is clearly superior to the other ones in building of the spanning tree for SGA. Thereby, by application of fixed-parameter algorithms, we managed to check that the existing SGA heuristic is of a high quality and selected the component which required an improvement. This allowed us to intensify the research in a proper direction which yielded a superior variation of SGA

    Towards Optimal and Expressive Kernelization for d-Hitting Set

    Full text link
    d-Hitting Set is the NP-hard problem of selecting at most k vertices of a hypergraph so that each hyperedge, all of which have cardinality at most d, contains at least one selected vertex. The applications of d-Hitting Set are, for example, fault diagnosis, automatic program verification, and the noise-minimizing assignment of frequencies to radio transmitters. We show a linear-time algorithm that transforms an instance of d-Hitting Set into an equivalent instance comprising at most O(k^d) hyperedges and vertices. In terms of parameterized complexity, this is a problem kernel. Our kernelization algorithm is based on speeding up the well-known approach of finding and shrinking sunflowers in hypergraphs, which yields problem kernels with structural properties that we condense into the concept of expressive kernelization. We conduct experiments to show that our kernelization algorithm can kernelize instances with more than 10^7 hyperedges in less than five minutes. Finally, we show that the number of vertices in the problem kernel can be further reduced to O(k^{d-1}) with additional O(k^{1.5 d}) processing time by nontrivially combining the sunflower technique with d-Hitting Set problem kernels due to Abu-Khzam and Moser.Comment: This version gives corrected experimental results, adds additional figures, and more formally defines "expressive kernelization

    Review

    Full text link
    corecore