1 research outputs found
Atomic Supersymmetry, Rydberg Wave Packets, and Radial Squeezed States
We study radial wave packets produced by short-pulsed laser fields acting on
Rydberg atoms, using analytical tools from supersymmetry-based quantum-defect
theory. We begin with a time-dependent perturbative calculation for
alkali-metal atoms, incorporating the atomic-excitation process. This provides
insight into the general wave packet behavior and demonstrates agreement with
conventional theory. We then obtain an alternative analytical description of a
radial wave packet as a member of a particular family of squeezed states, which
we call radial squeezed states. By construction, these have close to minimum
uncertainty in the radial coordinates during the first pass through the outer
apsidal point. The properties of radial squeezed states are investigated, and
they are shown to provide a description of certain aspects of Rydberg atoms
excited by short-pulsed laser fields. We derive expressions for the time
evolution and the autocorrelation of the radial squeezed states, and we study
numerically and analytically their behavior in several alkali-metal atoms. Full
and fractional revivals are observed. Comparisons show agreement with other
theoretical results and with experiment.Comment: published in Physical Review