7,241 research outputs found

    Quantum Monte Carlo simulations of a particle in a random potential

    Full text link
    In this paper we carry out Quantum Monte Carlo simulations of a quantum particle in a one-dimensional random potential (plus a fixed harmonic potential) at a finite temperature. This is the simplest model of an interface in a disordered medium and may also pertain to an electron in a dirty metal. We compare with previous analytical results, and also derive an expression for the sample to sample fluctuations of the mean square displacement from the origin which is a measure of the glassiness of the system. This quantity as well as the mean square displacement of the particle are measured in the simulation. The similarity to the quantum spin glass in a transverse field is noted. The effect of quantum fluctuations on the glassy behavior is discussed.Comment: 23 pages, 7 figures included as eps files, uses RevTeX. Accepted for publication in J. of Physics A: Mathematical and Genera

    Quantum fluctuations and glassy behavior: The case of a quantum particle in a random potential

    Full text link
    In this paper we expand our previous investigation of a quantum particle subject to the action of a random potential plus a fixed harmonic potential at a finite temperature T. In the classical limit the system reduces to a well-known ``toy'' model for an interface in a random medium. It also applies to a single quantum particle like an an electron subject to random interactions, where the harmonic potential can be tuned to mimic the effect of a finite box. Using the variational approximation, or alternatively, the limit of large spatial dimensions, together with the use the replica method, and are able to solve the model and obtain its phase diagram in the T−(ℏ2/m)T - (\hbar^2/m) plane, where mm is the particle's mass. The phase diagram is similar to that of a quantum spin-glass in a transverse field, where the variable ℏ2/m\hbar^2/m plays the role of the transverse field. The glassy phase is characterized by replica-symmetry-breaking. The quantum transition at zero temperature is also discussed.Comment: revised version, 23 pages, revtex, 5 postscript figures in a separate file figures.u

    Of mice and men: Sparse statistical modeling in cardiovascular genomics

    Full text link
    In high-throughput genomics, large-scale designed experiments are becoming common, and analysis approaches based on highly multivariate regression and anova concepts are key tools. Shrinkage models of one form or another can provide comprehensive approaches to the problems of simultaneous inference that involve implicit multiple comparisons over the many, many parameters representing effects of design factors and covariates. We use such approaches here in a study of cardiovascular genomics. The primary experimental context concerns a carefully designed, and rich, gene expression study focused on gene-environment interactions, with the goals of identifying genes implicated in connection with disease states and known risk factors, and in generating expression signatures as proxies for such risk factors. A coupled exploratory analysis investigates cross-species extrapolation of gene expression signatures--how these mouse-model signatures translate to humans. The latter involves exploration of sparse latent factor analysis of human observational data and of how it relates to projected risk signatures derived in the animal models. The study also highlights a range of applied statistical and genomic data analysis issues, including model specification, computational questions and model-based correction of experimental artifacts in DNA microarray data.Comment: Published at http://dx.doi.org/10.1214/07-AOAS110 in the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Logarithmic roughening in a growth process with edge evaporation

    Full text link
    Roughening transitions are often characterized by unusual scaling properties. As an example we investigate the roughening transition in a solid-on-solid growth process with edge evaporation [Phys. Rev. Lett. 76, 2746 (1996)], where the interface is known to roughen logarithmically with time. Performing high-precision simulations we find appropriate scaling forms for various quantities. Moreover we present a simple approximation explaining why the interface roughens logarithmically.Comment: revtex, 6 pages, 7 eps figure

    NICMOS Observations of Low-Redshift Quasar Host Galaxies

    Get PDF
    We have obtained Near-Infrared Camera and Multi-Object Spectrometer images of 16 radio quiet quasars observed as part of a project to investigate the ``luminosity/host-mass limit.'' The limit results were presented in McLeod, Rieke, & Storrie-Lombardi (1999). In this paper, we present the images themselves, along with 1- and 2-dimensional analyses of the host galaxy properties. We find that our model-independent 1D technique is reliable for use on ground-based data at low redshifts; that many radio-quiet quasars live in deVaucouleurs-law hosts, although some of the techniques used to determine host type are questionable; that complex structure is found in many of the hosts, but that there are some hosts that are very smooth and symmetric; and that the nuclei radiate at ~2-20% of the Eddington rate based on the assumption that all galaxies have central black holes with a constant mass fraction of 0.6%. Despite targeting hard-to-resolve hosts, we have failed to find any that imply super-Eddington accretion rates.Comment: To appear in ApJ, 28 pages including degraded figures. Download the paper with full-resolutio figures from http://www.astro.wellesley.edu/kmcleod/mm.p

    A comparison of the optical properties of radio-loud and radio-quiet quasars

    Get PDF
    We have made radio observations of 87 optically selected quasars at 5 GHz with the VLA in order to measure the radio power for these objects and hence determine how the fraction of radio-loud quasars varies with redshift and optical luminosity. The sample has been selected from the recently completed Edinburgh Quasar Survey and covers a redshift range of 0.3 < z < 1.5 and an optical absolute magnitude range of -26.5 < M_{B} < -23.5 (h, q_{0} = 1/2). We have also matched up other existing surveys with the FIRST and NVSS radio catalogues and combined these data so that the optical luminosity-redshift plane is now far better sampled than previously. We have fitted a model to the probability of a quasar being radio-loud as a function of absolute magnitude and redshift and from this model infer the radio-loud and radio-quiet optical luminosity functions. The radio-loud optical luminosity function is featureless and flatter than the radio-quiet one. It evolves at a marginally slower rate if quasars evolve by density evolution, but the difference in the rate of evolutions of the two different classes is much less than was previously thought. We show, using Monte-Carlo simulations, that the observed difference in the shape of the optical luminosity functions can be partly accounted for by Doppler boosting of the optical continuum of the radio-loud quasars and explain how this can be tested in the future.Comment: 33 pages, 9 postscript figures, uses the AAS aaspp4 LaTeX style file, to appear in the 1 February 1999 issue of The Astrophysical Journa

    Directed polymers on a Cayley tree with spatially correlated disorder

    Full text link
    In this paper we consider directed walks on a tree with a fixed branching ratio K at a finite temperature T. We consider the case where each site (or link) is assigned a random energy uncorrelated in time, but correlated in the transverse direction i.e. within the shell. In this paper we take the transverse distance to be the hierarchical ultrametric distance, but other possibilities are discussed. We compute the free energy for the case of quenched disorder and show that there is a fundamental difference between the case of short range spatial correlations of the disorder which behaves similarly to the non-correlated case considered previously by Derrida and Spohn and the case of long range correlations which has a totally different overlap distribution which approaches a single delta function about q=1 for large L, where L is the length of the walk. In the latter case the free energy is not extensive in L for the intermediate and also relevant range of L values, although in the true thermodynamic limit extensivity is restored. We identify a crossover temperature which grows with L, and whenever T<T_c(L) the system is always in the low temperature phase. Thus in the case of long-ranged correlation as opposed to the short-ranged case a phase transition is absent.Comment: 23 pages, 1 figure, standard latex. J. Phys. A, accepted for publicatio

    Localization of a polymer in random media: Relation to the localization of a quantum particle

    Full text link
    In this paper we consider in detail the connection between the problem of a polymer in a random medium and that of a quantum particle in a random potential. We are interested in a system of finite volume where the polymer is known to be {\it localized} inside a low minimum of the potential. We show how the end-to-end distance of a polymer which is free to move can be obtained from the density of states of the quantum particle using extreme value statistics. We give a physical interpretation to the recently discovered one-step replica-symmetry-breaking solution for the polymer (Phys. Rev. E{\bf 61}, 1729 (2000)) in terms of the statistics of localized tail states. Numerical solutions of the variational equations for chains of different length are performed and compared with quenched averages computed directly by using the eigenfunctions and eigenenergies of the Schr\"odinger equation for a particle in a one-dimensional random potential. The quantities investigated are the radius of gyration of a free gaussian chain, its mean square distance from the origin and the end-to-end distance of a tethered chain. The probability distribution for the position of the chain is also investigated. The glassiness of the system is explained and is estimated from the variance of the measured quantities.Comment: RevTex, 44 pages, 13 figure
    • 

    corecore