4 research outputs found

    Progress in the development of a S RETGEM-based detector for an early forest fire warning system

    Get PDF
    In this paper we present a prototype of a Strip Resistive Thick GEM photosensitive gaseous detector filled with Ne and ethylferrocene vapours at a total pressure of 1 atm for an early forest fire detection system. Tests show that it is one hundred times more sensitive than the best commercial ultraviolet flame detectors and therefore, it is able to reliably detect a flame of 1.5x1.5x1.5 m3 at a distance of about 1km. An additional and unique feature of this detector is its imaging capability, which in combination with other techniques, may significantly reduce false fire alarms when operating in an automatic mode. Preliminary results conducted with air filled photosensitive gaseous detectors are also presented. The approach main advantages include both the simplicity of manufacturing and affordability of construction materials such as plastics and glues specifically reducing detector production cost. The sensitivity of these air filled detectors at certain conditions may be as high as those filled with Ne and EF. Long term test results of such sealed detectors indicate a significant progress in this direction. We believe that our detectors utilized in addition to other flame and smoke sensors will exceptionally increase the sensitivity of forest fire detection systems. Our future efforts will be focused on attempts to commercialize such detectors utilizing our aforementioned findings.Comment: Presented at the International Conference on Micropattern gaseous detectors, Crete, Greece, June 200

    Towards sustainable land use: identifying and managing the conflicts between human activities and biodiversity conservation in Europe

    No full text
    Conflicts between biodiversity conservation and human activities are becoming increasingly apparent in all European landscapes. The intensification of agricultural and silvicultural practices, land abandonment and other land uses such as recreation and hunting are all potential threats to biodiversity that can lead to conflicts between stakeholder livelihoods and biodiversity conservation. To address the global decline in biodiversity there is, therefore, a need to identify the drivers responsible for conflicts between human activities and the conservation of European biodiversity and to promote the management of these conflicts. Here, the drivers of biodiversity conflicts are analysed in a European context for five habitat types: agricultural landscapes, forests, grasslands, uplands and freshwater habitats. A multi- disciplinary approach to conflict management is described, with active stakeholder involvement at every stage of conflict identification and management as well as a range of other approaches including stakeholder dialogue and education, consumer education, improvement of political and legislative frameworks, financial incentives, and planning infrastructur
    corecore